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Abstract

Statistical models of community-level homeless rates typically assume a linear relationship
to covariates. This linear model assumption precludes the possibility of inflection points in
homeless rates – thresholds in quantifiable metrics of a community that, once breached, are
associated with large increases in homelessness. In this paper, we identify points of structural
change in the relationship between homeless rates and community-level measures of housing
affordability and extreme poverty. We utilize the Ewens-Pitman attraction distribution to
develop a Bayesian nonparametric mixture model in which clusters of communities with similar
covariates share common patterns of variation in homeless rates. A main finding of the study
is that the expected homeless rate in a community increases sharply once median rental costs
exceed 32% of median income, providing statistical evidence for the widely used definition of
a housing cost burden at 30% of income. Our analysis also identifies clusters of communities
that exhibit distinct geographic patterns and yield insight into the homelessness and housing
affordability crisis unfolding on both coasts of the United States.

1 Introduction

Homeless rates in the United States vary significantly from one community to another. According
to the U.S. Department of Housing and Urban Development (HUD), roughly 1 in 1,250 people
were counted as homeless in Glendale, CA in January 2017, while 1 in 70 people were counted as
homeless in Mendocino County, CA that same month (HUD, 2017). This more than seventeen-
fold increase in the rate of homelessness within the state of California suggests that homelessness
is critically influenced by features of individual communities. In this study, we investigate complex
and potentially nonlinear relationships between homeless rates and community-level predictors.

Quantifying the association between homeless rates and covariates of a community is practi-
cally useful along two dimensions. First, it sharpens public focus on the social forces related to
homelessness – leading to improved monitoring and intervention opportunities to help the most
vulnerable citizens. Second, it provides a set of measurable objectives to guide public policy.

A significant number of studies have investigated statistical associations between covariates
of a community and homelessness1 (Corinth, 2015; Byrne et al., 2013; Lee et al., 2003; Quigley
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HUD-defined continuums of care. An alternative approach to assessing the relationship between community factors
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from those communities based on last address. See, for example, Culhane et al. (1996) and Rukmana (2008)
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et al., 2001); however, existing statistical models of homeless rates alternate between two extreme
assumptions. At one extreme, analyses assume a single global parameter so that the relationship
between homelessness and housing costs, for example, is the same nationwide (see, e.g., Byrne et al.
(2013)). Assuming a single global parameter is rigid, and it precludes the possibility that local
social structures mitigate (or exacerbate) the role that housing costs play in housing vulnerability.
At the other extreme, Glynn and Fox (2019) endow each community with a local parameter in
a hierarchical statistical model. Assuming local effects for each community is problematically
flexible, as there is scarce data on the size of the homeless population in each community –
leading to imprecise estimates of model parameters. In the presence of scarce data, there is a
trade-off between model flexibility and the precision of parameter estimates.

Between these extremes of model rigidity and flexibility exists a middle ground where clus-
ters of similar communities share model parameters. This modeling strategy has both statistical
and applied advantages. From a statistical perspective, pooling information across similar com-
munities provides sharper estimation of the association between community-level covariates and
homelessness. From an applied perspective, identifying clusters of communities is a way to define
highly-relevant peer groups for development and evaluation of policy interventions.

We have two primary objectives in this paper:

(O1) Flexibly estimate the relationship between community covariates and homeless
rates to identify points where structural changes in the relationship occur; and

(O2) Identify clusters of communities where homeless rates exhibit common patterns
of variation.

The statistical challenge is to estimate the complex functional relationship between homeless
rates and community-level covariates from scarce data. Because there is limited variation in the
features of a community from one year to the next, data from a single community is concentrated
in a limited region of predictor space. Estimating the complete response surface in predictor space
requires pooling data across related communities and fusing together local estimates. To estimate
the response surface locally, we pool data from communities with similar covariates utilizing a
Bayesian nonparametric mixture model where prior probabilities of cluster assignments depend on
covariates. A consequence of this covariate-dependent clustering strategy is that communities in
our analysis are no longer treated as exchangeable, and standard nonparametric mixture models,
such as the Dirichlet process mixture model (Antoniak, 1974; Escobar and West, 1995), are not
suitable for our analysis. To include community-level covariates in the prior probability of a
partition over communities, we utilize the Ewens-Pitman attraction (EPA) distribution of Dahl
et al. (2017). The EPA distribution is one in a broader class of nonexchangeable prior distributions
for random partition models (Müller et al., 2011; Park and Dunson, 2010; Shahbaba and Neal,
2009), which have been successfully used in applied analyses when the number of covariates is
small (Page and Quintana, 2016, 2015; Dahl, 2008).

The EPA distribution is a prior distribution over the space of partitions indexed by pairwise
similarity between observational units (communities in our case). The applied intuition is that
communities with similar covariates have a higher prior probability of membership in the same
cluster than communities with covariates that are dissimilar (Page and Quintana, 2018). We utilize
the EPA distribution rather than dependent Dirichlet processes (MacEachern, 2000) or distance-
dependent Chinese restaurant processes (Blei and Frazier, 2011) so that we directly model the
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partition of communities with covariate information. Three important aspects of our model are
(i) the number of clusters; (ii) cluster membership; and (iii) the relationship between community
covariates and homelessness within clusters are all jointly estimated as part of the inference
procedure. We compute fully Bayesian posterior distributions with a custom Markov chain Monte
Carlo algorithm that seamlessly combines the Polya-Gamma data augmentation strategy of Polson
et al. (2013) with the Gibbs sampling algorithm of Dahl et al. (2017) and a forward filtering
backward sampling (FFBS) algorithm to account for community-specific temporal trends.

Our analysis focuses on three measures of a community: rental costs, measured by Zillow’s
Rent Index (ZRI), median household income, and the percent of residents living in extreme
poverty. While the cost of housing is consistently identified as a predictor of homelessness both
across (Byrne et al., 2013) and within (Glynn and Fox, 2019) communities, housing costs in
absolute dollar amounts are an incomplete measure of housing affordability. The combination of
housing costs and household income – specifically, the percent of income spent on housing costs –
more completely reflects the relative affordability of housing across communities. By focusing on
median housing costs as a share of median income, we more directly compare housing affordability
in communities with different housing markets and economies. While median housing affordability
measures account for varying housing markets and income levels, they do not reflect the size of the
population in a community whose income is inadequate to meet the cost of housing. To control
for the size of the population in each community that is most vulnerable to homelessness, we also
include in our model the percent of a community living in extreme poverty.

Our analysis identifies a structural change in homeless rates when housing costs in a commu-
nity reach 32% of median income. After housing costs exceed 32% of median income, the expected
homeless rate in a community increases sharply. We also find three dominant modes of variation
in homeless rates, with 377 of 386 total communities in our analysis falling into one of three
clusters: communities in the first cluster – primarily located in the midwest, mid-Atlantic, and
southeast – tend to have very low homeless rates and modest housing costs; communities in the
second cluster – including most of New England, Florida, the mountain west and central United
States – have intermediate homeless rates and housing costs on par with the national average;
communities in cluster three, which span much of the west coast and include large metropolitan
areas on the east coast, have very high homeless rates and high costs of housing.

The paper proceeds as follows: in Section 2, we describe the data used in our analysis; in
Section 3, we present our EPA-based mixture model of homeless populations and describe choices
for prior distributions; in Section 4, we detail our Markov chain Monte Carlo inference procedure;
in Section 5, we present posterior predictive distributions for homeless rates over a range of
housing affordability and extreme poverty levels, and we also identify clusters of communities
sharing similar associations; in Section 6, we conclude with a discussion of our findings and how
the clusters of communities can be effectively utilized for policy prescriptions.

2 Data

The data used in our analysis spans the years 2011 to 2017 and comes from three sources: HUD,
the American Community Survey (ACS), and the real estate analytics firm Zillow.

Each year, HUD produces a nationwide estimate of the number of people experiencing home-
lessness on a single night. The national estimate is based on local enumeration efforts called
point-in-time (PIT) counts. While the PIT counts are conducted in January, the data is typically
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released the following November. At the local level, counts are conducted in roughly 4002 contin-
uums of care (CoCs), geographic units that coordinate support services for homeless and whose
boundaries are typically coterminous with a single city, a single county, or a group of counties. In
2017, PIT estimates were produced for 399 CoCs across all 50 states, the District of Columbia,
Puerto Rico, the U.S. Virgin Islands, and Guam.

To estimate homeless rates, it is essential to know the relative size of CoCs; however, the total
population of a CoC is not reported by HUD. Discrepancies between geographic boundaries of
CoCs and boundaries of geographic units for which total population estimates are made available
by the U.S. Census Bureau mean that total population estimates for some CoCs are not readily
available. To overcome this mismatch, we develop a crosswalk between HUD CoCs – the most
granular geographic unit for which homeless data is available nationally – and census tracts. To
match census tracts with CoCs, we utilize a process conceptually similar to that described by
Byrne et al. (2013). Specifically, we use geospatial data from HUD on the boundaries of each CoC
and compute the geographic centroid of each census tract. If the tract centroid falls within the
boundaries of a CoC, we match the whole tract to the CoC. Based on this assignment of tracts to
CoCs and tract-level ACS 5-year population estimates, we construct approximate total population
measures for each CoC. For example, to construct the CoC total populations in 2011, we use the
2007-2011 ACS 5-year estimates. These CoC total population estimates and PIT counts facilitate
comparisons of homeless rates across communities of various sizes. We have made the code used
to conduct the geospatial matching and construct the CoC total population estimates publicly
available on the GitHub page of one of the authors (Byrne, 2018).

We focus our analysis on three particular covariates of a community: rental costs, measured
by Zillow’s rent index (ZRI), median household income, and the percent of residents living in
extreme poverty. Median household income data and the percent of residents living in extreme
poverty are also reported in ACS. We weight tract-level measures of median income and extreme
poverty by the tract-level populations and aggregate to construct CoC-level measures of median
household income and rates of extreme poverty. To measure rental costs, we follow Glynn and
Fox (2019) and utilize a custom-computed ZRI. The critical difference in the rental data for this
analysis and that used by Glynn and Fox (2019) is that in the present study, Zillow directly
computed a rent index for each CoC based on geospatial data provided by HUD. The rent index
methodology is identical to Zillow’s existing ZRI methodology (Bun, 2012), but it is brought
to the non-standard CoC geographies – providing a measure of rent not previously available to
researchers utilizing PIT count data. Table 1 presents a snapshot of the data for the New York
City CoC (NY-600). While countless measures of a community are potentially associated with
homelessness – including apartment vacancy rates, unemployment rates, demographics, etc. –
most are highly correlated with the covariates that we include in our analysis.

Observe in Figure 1 that as both ZRI (as a percentage of median income) and the rate of
extreme poverty increase, the estimated log odds of homelessness generally increases as well; how-
ever, this is not universally true. In Figure 1a, observe that the data strands for the Cook County
(IL) CoC and the Cambridge (MA) CoC exhibit very different associations with ZRI / Median
Income. A single linear model is too rigid to realistically explain the disparate associations; how-
ever, the CoC-level data sequences are only 7 years long, and inference on local model parameters
characterizing the individual relationships visualized in Figure 1a may not be robust. To over-

2The exact number of CoCs varies from year to year due to the creation or dissolution of CoCs or the merger of
two or more existing CoCs. In 2007, there were 461 CoCs; in 2017 there were 399.
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Count Population ZRI ($) Income ($) Poverty (%)

2011 51,123 7,944,958 1,738.62 54,974.00 8.60
2012 56,672 8,009,322 1,768.21 55,510.05 8.82
2013 64,060 8,074,863 1,843.62 56,036.71 9.03
2014 67,810 8,159,782 2,010.27 57,029.83 9.08
2015 75,323 8,231,358 2,175.81 57,758.77 8.95
2016 73,523 8,268,601 2,322.79 59,552.74 8.79
2017 76,501 8,305,844 2,469.76 61,346.72 8.63

Table 1: Homeless count and community covariates of New York City CoC (NY-600), including
all five burroughs of New York City.

come this data scarcity at the CoC-level and facilitate robust inference, we pool observations in
a cluster of CoCs sharing a similar relationship. The GAM-smoothings of the log odds ratios
in Figures 1a and 1b illustrate nonlinear increases in homeless rates associated with increases in
ZRI/median income and rates of extreme poverty.

(a) Affordability (b) Poverty

Figure 1: Imputed log odds of homelessness plotted against ZRI as a percentage of income (left)
and rates of extreme poverty (right). The highlighted data are from the Cambridge (MA) CoC
and the Cook County (IL) CoC, and the line segments through the MA-509 and IL-511 highlighted
data correspond to ordinary least squares model fits. The solid lines spanning the full range of the
x-axes in both figures present Generalized Additive Model (GAM)-smoothings of the CoC-level
log odds.

3 A Bayesian nonparametric model for homeless counts

The novel modeling contribution of the study is a mixture model for latent homeless rates based
on the Ewens-Pitman attraction (EPA) distribution (Dahl et al., 2017). The EPA distribution is a
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prior over the space of CoC-partitions, and it is indexed by pairwise similarity of CoCs themselves.
Unlike the partition distribution implied by the Dirichlet Process prior (Ferguson, 1973) where
data is modeled as exchangeable, the EPA distribution models dependence in cluster assignments
based on covariates of CoCs. It assigns higher probability to partitions where CoCs with similar
levels of housing affordability and extreme poverty belong to the same cluster. Before introducing
the modeling innovation in Section 3.2, we first discuss our strategy for modeling the unobserved
homeless rate in a community given the HUD-reported PIT counts and our noisy estimates of
CoC-level total populations.

3.1 Modeling homeless rates as latent variables

Modeling homeless rates requires some care, as several data quality challenges prevent simply
dividing PIT counts in a given year by the total CoC population. Hopper et al. (2008) provide
evidence that street counts do not fully reflect the size of the homeless population in a community.
This systematic undercount of homeless populations artificially lowers homeless rates and neces-
sitates modeling the mechanism by which individuals are excluded from PIT counts. Uncertainty
in the size of the homeless population is one aspect of the data quality challenge. Uncertainty in
the total population of each CoC is a second aspect. While we observe the ACS 5-year estimates
of total population at the tract level, tract populations are aggregated to form a noisy estimate
at the CoC level. At both the tract and CoC level, the total population is not exactly known.
Modeling noise in the numerator and denominator of a rate calculation allows for a more complete
accounting of uncertainty in homeless rates.

To address these data quality challenges, we adopt the modeling framework proposed by
Glynn and Fox (2019) and treat unobserved homeless rates as parameters in a hierarchical
Bayesian statistical model. The hierarchical model has three levels: (i) a component model for
the total population of CoC i in year t, denoted Ni,t; (ii) a component model for the unobserved
total homeless population, denoted Hi,t; and (iii) a component model for the counted number
of homeless, denoted Ci,t. In this hierarchical model, uncertainty in Ni,t and Hi,t propagate to
estimates of the latent homeless rate, denoted pi,t. We summarize critical components of the
framework here.

Total Population. The total population of CoC i in year t is modeled with a Poisson random
variable,

Ni,t|λi,t ∼ Poisson(λi,t). (1)

The expected total population in year t, λi,t, is further modeled over time in a way that admits
a forward filtering backward sampling algorithm to infer λi,t from the ACS 5-year estimates from
2011-2017. We refer the reader to Glynn and Fox (2019) for a discussion of prior distributions for
λi,t, which are not the core focus of the current study.

Total homeless population. The total number of homeless Hi,t is a small subpopulation of
the CoC’s total population. To model the size of the homeless subpopulation conditional on the
total population of the CoC, a binomial thinning step is employed,

Hi,t|Ni,t, pi,t ∼ Binomial(Ni,t, pi,t). (2)

While Hi,t is modeled as a latent variable given Ni,t, it is important to note that Hi,t itself is
not directly observed. We treat Hi,t as missing data and impute it as part of our model fitting
procedure. The homeless rate, pi,t, is the focus of Section 3.2.
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Homeless count. The counted number of homeless, a quantity less than or equal to Hi,t, is
modeled as a conditionally binomial random variable

Ci,t|Hi,t, πi,t ∼ Binomial(Hi,t, πi,t). (3)

The parameter πi,t ∈ [0, 1] is the probability that a person who is homeless will be counted as
homeless. We adopt priors for πi,t utilized by Glynn and Fox (2019) to carry out our analysis.
As Hi,t is not observed, it is not possible to learn πi,t. We view πi,t as a nuisance parameter and
integrate over it so that the marginal model Ci,t|Hi,t is beta-binomial distributed.

3.2 A nonparametric mixture model for pi,t

The primary modeling innovation of the study is a mixture model for pi,t based on the EPA
distribution. As outlined in 2, homeless rate pi,t is the unobserved probability of homelessness in
a Bayesian logistic regression. We transform pi,t to the real line with a logit transformation

ψi,t = log

(
pi,t

1− pi,t

)
= F ′iβi,t +X ′i,tφi + εi,t, εi,t ∼ N(0, σ2ψi). (4)

The log odds of homelessness in CoC i in year t, denoted ψi,t, is modeled as the composition of a
dynamic latent factor F ′iβi,t and the regression X ′i,tφi. We discuss each in turn.

Regression X ′i,tφi. The p × 1 vector Xi,t is a set of community-level predictors and φi is a
p × 1 vector of regression coefficients. Our modeling objective is to induce a shared parameter
vector across all CoCs in the same cluster. To achieve this objective, we reparameterize the
collection φ1, . . . , φn by the partition πn = {S1, . . . , Sqn} and shared cluster-level coefficients
φ̃ = (φ̃1, . . . , φ̃qn). The partition πn splits the CoC index set {1, . . . , n} into qn mutually exclusive
and non-empty subsets S1, . . . , Sqn . When index i ∈ Sk, we say that CoC i belongs to cluster k
and define cluster membership variable Zi = k. The regression vector φi is then constructed from
the set of unique p× 1 vectors φ̃ = (φ̃1, . . . , φ̃qn) so that

φi =

qn∑
k=1

φ̃k1{Zi=k}, (5)

where each φ̃k is independently drawn from a p-dimensional Normal distribution, φ̃k ∼ N(µ0,Σ0).
Hyperparameter choices for µ0 and Σ0 are discussed in Section 3.3.

In this study, we include a leading one in covariate vector

Xi,t =
[
1 ZRIi,t/MedianIncomei,t ExtPovertyi,t

]′
.

The leading one results in a shared cluster-level intercept or expected rate of homelessness. One
way of interpreting the cluster-level intercept is as the baseline homeless rate in a particular group
of communities, an important metric for policymakers.

The model for inducing shared parameters in clusters of CoCs is completed by an EPA prior
distribution over all possible partitions of CoCs. The EPA prior distribution for the partition
of CoCs, p(πn|α, δ, f,ω), is indexed by a concentration parameter α (similar to the Dirichlet
process), a discount parameter δ ∈ [0, 1), and similarity function f . The EPA distribution, which
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depends on the sequence in which CoCs are assigned to clusters and thus not exchangable, is also
indexed by a permutation of CoC indices denoted ω = (ω1, . . . , ωn).

Cluster assignment probabilities depend on CoC covariates through similarity function f .
The similarity function f : R3×3 → (0, 1] maps distance between CoCs in covariate space to the
unit interval, quantifying the pairwise similarity between two CoCs,

f(Xωj ,T , Xωi,T ) = exp{−τ ||Xωj ,T −Xωi,T ||2}. (6)

CoCs ωi and ωj with identical covariates will have a similarity of one. If their covariates are far
apart in R3, the similarity will be closer to zero. Decay in similarity is governed by temperature τ ,
a hyperparameter chosen by the modeler. In this analysis, we let τ = 0.35 so that two CoCs ωj and
ωi with ||Xωj ,T −Xωi,T ||2 = 10 are quite different, with similarity of f(Xωj ,T , Xωi,T ) = 0.03. For
example, two CoCs that have the same level of extreme poverty but housing affordability measures
that differ by 10% have very little similarity between them and a higher prior probability of being
in different clusters. As τ increases, the probability that all members of a cluster are located near
each other in predictor space increases as well.

The probability mass function p(πn|α, δ, f,ω) is constructed from the sequential product of
conditional probabilities

p(πn|α, δ, f,ω) =
n∏
`=1

p`(α, δ, f,π(ω1, . . . , ω`−1), (7)

where p1(α, δ, f,π0) = 1. For ` > 1, p`(α, δ, f,π(ω1, . . . , ω`−1)) is the probability that CoC ω` is
assigned to cluster k given the previous assignments of CoCs ω1, . . . , ω`−1, parameters α and δ,
and similarity function f .

p`(α, δ, f,π(ω1, . . . , ω`−1)) = Pr(Zω` = k|α, δ, f,π(ω1, . . . , ω`−1)) (8)

=



(
`−1−δq`−1

α+`−1

) ∑
{ωs:Zωs=k}

f(Xω`,T ,Xωs,T )

`−1∑
s=1

f(Xω`,T ,Xωs,T )

, for k = 1, . . . , q`−1

α+δq`−1

α+`−1 for k = 0 (e.g., a new cluster)

(9)

where q`−1 is the number of clusters (subsets) in the partition of the first `−1 CoCs, π(ω1, . . . , ω`−1).
Note that the probability of assignment depends on the order in which the CoCs are assigned.
We address this non-exchangeability issue by utilizing a prior distribution for permutations and
numerically integrating all over all possible permutations in our MCMC algorithm (see Section 4),
resulting in a joint posterior distribution that is invariant to the ordering of the CoCs. Following
Dahl et al. (2017), we use a uniform prior distribution so that p(ω) = 1

n! for all permutations.
The EPA distribution depends on the ratio of similarities∑

{ωs:Zωs=k}
f(Xω`,T , Xωs,T )

`−1∑
s=1

f(Xω`,T , Xωs,T )

.
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The numerator is the sum of similarity between CoC ω` and all other CoCs assigned to cluster k.
The denominator is the total sum of similarity across all previously assigned `− 1 CoCs. Taken
together, the ratio is the proportional attraction of CoC ω` to cluster k. By fixing δ = 0, the
cluster assignment process is a modified Chinese Restaurant Process. In fact, if the similarity
function is constant (e.g., f(Xω`,T , Xωs,T ) = 1 ) and δ = 0, then the EPA distribution simplifies
to the partition distribution implied by the Dirichlet Process. See Section 4.1 of Dahl et al.
(2017). For this reason, we fix δ = 0 and interpret the induced prior distribution for the collection
(φ1, . . . , φn) as a stochastic process prior that is similar to the Dirichlet process but – due to the
EPA distribution over πn – tilts a CoC’s random cluster assignment towards a cluster where other
members share similar covariates.

Innovation variance σ2ψi. The number of clusters qn is significantly impacted by the choice of

innovation variance σ2ψi in 4. If the innovation variance is small, the variation of log odds around
a particular regression line is tight, and many clusters are needed to explain variation in the
n = 386 CoCs. As the innovation variance σ2ψi increases, larger deviations in homeless rates from

the regression fit are expected, and fewer clusters are needed. We model each σ2ψi with an inverse
gamma (IG) distribution, allowing the data to appropriately inform the innovation variance and
number of clusters.

σ2ψi ∼ IG(aψ, bψ) (10)

A consequence of this model choice for σ2ψi is that conditional on the latent factor βi,t and

φi, the log odds of homelessness p(ψi,t|βi,t, φi) =
∫∞
0 p(ψi,t|βi,t, φi, σ2ψi)p(σ

2
ψi

)dσ2ψi is t-distributed.
The heavy tails of ψi,t|βi,t, φi allow for CoC-specific variation in homeless rates and a regression
model that is robust to outlier homeless counts driven by idiosyncratic local events.

Dynamic latent factor βi,t. The cluster-level regression coefficient φi models variation in
ψi,t associated with predictors Xi,t; however, there are many covariates of a community that
are either excluded from Xi,t or not directly observed. To account for these unobserved local
covariates, we include a CoC-level dynamic latent factor F ′iβi,t, allowing for small departures
from the cluster-level regression that may be due to local policies, cultural attitudes toward
homelessness, affordable housing initiatives, and many other difficult to observe local factors.
The F ′iβi,t term reflects whether the environment in CoC i contributes to or reduces homelessness
beyond the level associated with predictors Xi,t in a specific cluster. To account for temporal
trends in these latent factors at the CoC-level, we model βi,t with a two-dimensional state-space
model

βi,t = Aβi,t−1 + wi,t, wi,t ∼ N(0,W ). (11)

The dynamic latent factor model in 11 makes two important contributions: first, the 2 × 1 βi,t
vector provides a mechanism to include (in aggregate) the unobserved community features that
are excluded from Xi,t; second, it allows for temporal trends in homeless rates that are not well
explained by predictors Xi,t. The locally linear trend model for βi,t is achieved by choosing

A =

[
1 1
0 1

]
and F ′i =

[
1 0

]
. See West and Harrison (1997) for more detail on dynamic model

structures.
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3.3 Prior choices

Prior distributions for (βi,0, α, σ
2
ψi

) and hyperparameters µ0 and Σ0 are chosen by matching the
first two moments of the implied prior distribution of ψi,0 to the empirical distribution for the
log odds of homelessness computed from 2010 data. Since the data used in our analysis begins
in 2011, we use data from 2010 to inform priors. The empirical distribution of log odds of
homelessness in 2010 is unimodal and symmetric with sample mean −6.24 and sample variance
0.69 (see Figure 2a). The expectation of ψi,0, computed by taking the expectation of 4, is E[ψi,0] =
F ′i,0E[βi,0]+X

′
i,0E[φi]. We choose E[βi,0] = 0 to encode our prior belief that the expected homeless

rate in a community is the cluster-level contribution from CoC-predictors, E[ψi,0] = X ′i,0E[φi].
The choice of E[φi] is akin to choosing mean µ0. In Section 3.2, we noted that the cluster-level
intercept may be interpreted as the baseline rate of homelessness in a community. Thus, we

utilize PIT counts from 2010 on chronic homelessness to inform the first element µ
(1)
0 = −8.28.

Remaining elements of µ0 are chosen so that the difference between the sample mean in 2010

and µ
(1)
0 is divided evenly across coefficients for housing affordability and extreme poverty, and

µ
(2)
0 = µ

(3)
0 =

−6.24−µ(1)0

1
n

n∑
i=1

(
X

(2)
i,0 +X

(3)
i,0

) . When we include CoC data on housing affordability, X(2), and the

rate of extreme poverty, X(3), we compute µ′0 =
[
−8.28 0.061 0.061

]
.

With the means of prior distributions chosen so that E[ψi,0] matches the sample mean in the
2010 data, we follow a similar strategy in choosing prior variances. The objective is to compose
V ar(ψi,0) from contributions that are consistent with the modeler’s uncertainty in each parameter.
The variance V ar(ψi,0) may be decomposed with an application of the law of total variance,

V ar(ψi,0) = E[V ar(ψi,0|βi,0, φi, σ2ψi)] + V ar(E[ψi,0|βi,0, φi, σ2ψi ]) (12)

= E[σ2ψi ] + F ′i,0V ar(βi,0)Fi,0 +X ′i,0V ar(φi)Xi,0. (13)

We begin by fixing the latent factor covariance matrix V ar(βi,0) = diag(0.1, 1×10−6), which
allows for meaningful systematic (as opposed to idiosyncratic) deviations in a community’s home-
less rate from the homeless rate of the cluster. The variance of φi, denoted by Σ0, is chosen
to encode the belief that our most uncertain component is the intercept, the baseline rate of
homelessness. We fix Σ0 = diag(0.4, 0.0002, 0.0002). The choice of 0.0002 for the variance of
coefficients associated with housing affordability and poverty encodes a strong prior belief that
these parameters are positive, but it does not rule out a negative association, as illustrated in
Figure 2b, where the posterior for the housing affordability coefficient concentrates on negative
values in one of the clusters. The remaining variance component is σ2ψi ∼ IG(3, 0.1), which puts
a diffuse prior on observational noise in homeless rates – encoding a belief that in some CoCs, the
homeless rate is close to the regression fit, while in other CoCs, the rate fluctuates significantly
due to random local factors. Dahl et al. (2017) note the relationship between α and the concen-
tration parameter in the Dirichlet process, and we follow Escobar and West (1995) in utilizing
the conventional α ∼ Ga(1, 1) prior distribution. We note that prior choices for V ar(βi,0), α
and σ2ψi impact the inferred number of clusters. By choosing relatively diffuse priors for each, we
give the data a significant role in informing the number of clusters. The marginal prior for ψi,0
is illustrated in Figure 2a. Observe that the induced prior for ψi,0 is slightly more diffuse than
the empirical distribution of log odds in 2010, providing for the possibility that homeless rates in
CoCs nationwide are actually more variable than was observed in 2010 alone.
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(a) Moment Matching (b) Posterior update

Figure 2: Left: The empirical distribution of log odds of homelessness in 2010 and the implied

prior distribution for ψi,0. Right: the prior and posterior distributions for φ̃
(2)
k , the parameter

associated with housing affordability.

4 Markov Chain Monte Carlo

Our objective is to sample from the posterior distribution

p(φ̃, Z1:n, β1:n,1:T |N1:n,1:T , C1:n,1:T ). (14)

Our computational strategy is to condition on observations Ni,t and Ci,t while numerically in-
tegrating each σ2ψi , latent variables Hi,t and ψi,t, and concentration parameter α from the joint
posterior. Importantly, we also integrate over the permutation ω so that the posterior distribution
is invariant to the order in which we assign CoCs in the EPA partitioning.

p(φ̃, Z1:n, β1:n,1:T |N1:n,1:T , C1:n,1:T )

=

∫
p(ψ1:n,1:T , H1:n,1:T , σ

2
ψ,1:n, α,ω, . . .

. . . φ̃, Z1:n, β1:n,1:T , |N1:n,1:T , C1:n,1:T )dH1:n,1:Tdψ1:n,1:Tdσ
2
ψ,1:ndαdω.

The computational scheme is a parameter expanded Gibbs sampler: to integrate over ψi,t
in the logistic model, we utilize Pólya-Gamma data augmentation (Polson et al., 2013); to draw
latent factor sequence βi,1:T , we rely on forward filtering and backward sampling (FFBS); to
sample ω, φ and Z, we use the Gibbs steps of Dahl et al. (2017). The MCMC algorithm is
initialized by sampling from the posterior when (φ1, . . . , φn) is modeled with a Dirichlet Process
mixture model (e.g., when f(Xi, Xj) = 1) using the standard MCMC algorithms of Neal (2000).
We run our MCMC algorithm for 20,000 iterations and discard the first 10,000 as a burn-in.
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4.1 Sampling steps

There are nine different sampling steps required in the MCMC algorithm. Step 1 is for latent
variable Hi,t. Step 2 samples a Pólya-Gamma auxiliary variable ζ (Polson et al., 2013). Condi-
tional on ζi,t, we sample the log odds of homelessness ψi,t in Step 3. Given the sequence of log
odds draws ψi,1:T and draws φ̃k and Zi = k, we sample the latent factor sequence βi,1:T utilizing
FFBS. Step 5 updates the innovation variance σ2ψi by sampling from an inverse gamma full con-
ditional distribution. Step 6 updates the concentration parameter α by sampling from a mixture
of Gamma distributions (Escobar and West, 1995). Step 7, Step 8, and Step 9 are from the EPA
sampling algorithm of Dahl et al. (2017).

1. For each i, t, sample the total number of people experiencing homelessness in metro i and
year t, Hi,t, from a discrete distribution with support [Ci,t, Ni,t]. The probability mass for
each possible value is

p(Hi,t|Ni,t, Ci,t, pi,t, ai,t, bi,t) ∝
Γ(Hi,t + 1)

Γ(Ci,t + 1)Γ(Hi,t − Ci,t + 1)

Γ(Ci,t + ai,t)Γ(Hi,t − Ci,t + bi,t)

Γ(Hi,t + ai,t + bi,t)
× . . .

× Γ(ai,t + bi,t)

Γ(ai,t)Γ(bi,t)

(
Ni,t

Hi,t

)
p
Hi,t
i,t (1− pi,t)(Ni,t−Hi,t).

Sampling Hi,t depends on prior beliefs about count accuracy πi,t ∼ Beta(ai,t, bi,t) in 3. We
follow Glynn and Fox (2019) and specify

E[πi,t] =
0.95× CSheltered

i,0 + 0.6× CUnsheltered
i,0

Ci,0
,

V ar(πi,t) = 0.0015,

and compute

ai,t = E[πi,t]

(
(1− E[πi,t])E[πi,t]

V ar(πi,t)
− 1

)
, (15)

bi,t =
V ar(πi,t)

E[πi,t]2

(
a2i,t

E[πi,t]
+ ai,t

)
. (16)

2. For each i, t, sample the auxiliary Pólya-Gamma random variates to augment the total
homeless variable, ζi,t|Ni,t, ψi,t ∼ PG(Ni,t, ψi,t).

3. For each i, t, sample the normally distributed

ψi,t|ζi,t, Ni,t, Hi,t, Zi = k, φ̃k, σ
2
ψi

∼N

(ζi,t +
1

σ2ψi

)−1(
Hi,t −

Ni,t

2
+

1

σ2ψi

(
βi,t +X ′i,tφ̃k

))
,

(
ζi,t +

1

σ2ψi

)−1
.
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4. For each i, conditional on ψi,t, Zi = k, and φ̃k, construct Dynamic Linear Model

y∗i,t = F ′iβi,t + εi,t (17)

βi,t = Aβi,t−1 + wi,t, (18)

where y∗i,t = ψi,t − X ′i,tφ̃k. Then jointly sample sample βi,1:T |ψi,1:T , Zi = k, φ̃k, σ
2
ψi

from
a multivariate normal distribution using standard FFBS computations for Dynamic Lin-
ear Models. See West and Harrison (1997); Carter and Kohn (1994); Fruhwirth-Schnatter
(1994).

5. For each i, sample the inverse gamma distributed σ2ψi |Zi = k, φ̃k, βi,1:T , ψi,1:T ∼ IG(aψ +

T
2 , bψ + 1

2

∑T
t=1

(
ψi,t − βi,t −X ′i,tφ̃k

)2
.

6. Sample α|φ̃ from a mixture of Gamma distributions as in Escobar and West (1995).

• First, sample g|α ∼ Be(1, α+ 1).

• Compute ρg, where
ρg

1−ρg = qn
n(1−log(g)) .

• Sample α|g, φ̃ ∼ ρgGa(1 + qn, 1− log(g)) + (1− ρg)Ga(qn, 1− log(g)).

7. Update permutation ω following the Metropolis-Hastings step of Dahl et al. (2017). First,
propose a new permutation ω∗ by updataing r randomly chosen elements of the current
permutation ω. The remaining n−r elements of ω∗ are identical to ω. The updated elements

of ω∗ are randomly shuffled, and ω∗ is accepted with probability min
{

1, p(πn|α,δ=0,ω∗,f)
p(πn|α,δ=0,ω,f)

}
.

The integer r is chosen so that the acceptance probability is ≈ 40%, which in our simulations
is achieved when r = 90.

8. For each ωi, sample Zωi from the the discrete full conditional distribution over k = 0, 1, . . . , qn,

p(Zωi = k|Z(−ωi), α,ω, ψωi,1:T , φ̃, σ
2
ψωi

, βωi,1:T ) ∝

p(π
Zωi→k
n |α, δ = 0,ω, f)p(ψωi,1:T |Zωi = k, φ̃k, βωi,1:K , σ

2
ψωi

).

Note that p(π
Zωi→k
n |α, δ = 0,ω, f) is computed using equation 8 for the partition π

Zωi→k
n ,

which is constructed by assigning CoC ωi to cluster k in the current partition πn. If k = 0
(corresponding to a new cluster), sample φ0 ∼ N(µ0,Σ0).

9. For each k = 1, . . . , qn, sample φ̃k|Z1:n, ψ1:n,1:T , β1:n,1:T , {σ2ψi}
n
i=1 ∼ N(a∗, A∗), where

• A∗ =

(
Σ−10 +

∑
{i:Zi=k}

1
σ2
ψi

∑T
t=1Xi,tX

′
i,t

)−1
• a∗ = (A∗)−1

(
Σ−10 µ0 +

∑
{i:Zi=k}

1
σ2
ψi

∑T
t=1Xi,t(ψi,t − βi,t)

)
.
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4.2 Posterior predictive distributions of homeless rates

Inferred relationships between homeless rates and CoC-predictors are best summarized by the pos-
terior predictive distribution of the log odds of homelessness in a new community with predictor-
vector Xn+1,T when there are no latent factors, p(ψn+1,T |βn+1,T = 0, Xn+1,T , C1:n,1:T , N1:n,1:T ).
The posterior predictive is computed by integrating over Zn+1, φ̃, and σ2ψn+1

in the joint distri-
bution

p(ψn+1,T , Zn+1, φ̃, σ
2
ψn+1
|βn+1,T = 0, Xn+1,T , C1:n,1:T , N1:n,1:T ). (19)

We perform this integration numerically and construct samples of the posterior predictive homeless
rate in a new CoC according to the following four step procedure.

1. For the mth MCMC iteration, sample cluster assignment Z
(m)
n+1 for a new CoC according to

the model implied probability mass function

Pr(Z
(m)
n+1 = k|α(m), δ = 0, f,π(ω

(m)
1 , . . . , ω(m)

n )) (20)

=



(
n

α(m)+n

) ∑
{ωs:Zωs=k}

f(Xn+1,T ,Xωs,T )

n∑
s=1

f(Xn+1,T ,Xωs,T )
, for k = 1, . . . , q

(m)
n

α(m)

α(m)+n
for k = 0 (e.g., a new cluster) .

(21)

2. Sample
(
σ2ψn+1

)(m)
∼ IG(aψ, bψ).

3. If Z
(m)
n+1 = k for k = 1, . . . , q

(m)
n , sample ψ

(m)
n+1 ∼ N

(
X ′n+1,T φ̃

(m)
k ,

(
σ2ψn+1

)(m)
)

. If Z
(m)
n+1 = 0,

first draw φ̃
(m)
0 ∼ N(µ0,Σ0) and then sample ψ

(m)
n+1 ∼ N

(
X ′n+1,T φ̃

(m)
0 ,

(
σ2ψn+1

)(m)
)

.

4. Transform to the homeless rate with the logistic transformation, p
(m)
n+1 = 1

1+e
−ψ(m)

n+1

.

While the functional form ψn+1,T = X ′n+1,T φ̃k + εn+1,T is locally linear in predictor space

conditional on Zn+1 = k, Xn+1,T , and φ̃k, the marginal predictive distribution of ψn+1,T is not
necessarily linear as Xn+1,T changes. Since cluster assignment prior probabilities depend on
covariates, Zn+1 may also change as Xn+1,T changes, and ψn+1,T may exhibit nonlinear form as
a function of Xn+1,T . This flexible functional form allows us to to identify structural changes in
the relationship between homeless rates and CoC covariates, a main objective of the analysis.

The temperature τ in 6 controls the degree to which information is borrowed across predictor
space when computing the posterior predictive. When predicting the homeless rate in a new
metropolitan area, it makes sense to rely heavily on data from other big metropolitan areas
rather than giving equal weight to data from rural CoCs. This common sense objective requires
that pairwise similarity between CoCs rapidly decay in X, necessitating larger values of τ . A
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consequence of choosing τ = 0.35 is that the posterior predictive distribution of the homeless rate
in a new community

pn+1,T |βn+1,T = 0, Xn+1,T , C1:n,1:T , N1:n,1:T

is heavily informed by data from CoCs that are close neighbors in predictor space. We believe
this an important feature of our model.

5 Results

There are three main findings of our study: (i) there is an inflection point when ZRI reaches 32%
of median income – after which the expected homeless rate in a community sharply increases;
(ii) we identify six different clusters of CoC’s that exhibit distinct geographic patterns; and (iii)
unobserved factors in a CoC beyond poverty and housing affordability contribute meaningfully
to increases (decreases) in homeless rates over time. In Section 5.1, we illustrate the complex
nonlinear associations between homeless rates, housing affordability, and extreme poverty. In
Section 5.2, we present findings from our cluster analysis. In Section 5.3, we examine the net
contribution of additional unobserved factors to the overall homeless rate – allowing us to identify
temporal trends in homeless rates that are not explained by housing affordability or poverty.

5.1 Inflection points in CoC-predictors

A primary objective of this analysis is to identify levels of housing affordability and extreme
poverty which, once exceeded, predict significant increases in homeless rates. Identifying these
inflection points can help communities prepare for rapid growth in homeless populations. In
Figure 3, we summarize the relationship between homeless rates, housing affordability, and ex-
treme poverty with the posterior predictive distribution computed in Section 4.2. The posterior
predictive is a two-dimensional surface for the homeless rate over a grid of housing affordability
and extreme poverty values. In Figure 3, we present cross sections of the surface at the sample
average of both predictors. In Figure 3a, we predict the homeless rate as a function of housing
affordability when extreme poverty is the sample average (6.64%). For example, we expect a
homeless rate of ≈ 0.32% (y-axis) in a community where rental costs consume 40% (x-axis) of
median income and extreme poverty is on par with the national average. San Diego is an example
of a community with these characteristics. In 2017, the extreme poverty rate in San Diego was
6.26% and ZRI consumed 40.16% of median income. The estimated homeless rate in San Diego
in 2017 was 0.37% – right in the middle of the predicted range.

To identify inflection points in housing affordability, we numerically evaluate the second
derivative of ψ̃(x∗) := E[ψn+1,T |C1:n,1:T , N1:n,1:T ] for covariate vector X ′∗ =

[
1 x∗ 6.64

]
. To

estimate the location of inflection points, we compute the posterior probability that the second
derivative ψ̃′′(x∗) exceeds threshold κ, corresponding to structural changes in the slope of ψ̃(x∗).
This probability is computed with posterior samples in equation 22.

P
(
ψ̃′′(x∗) > κ

)
≈ 1

M

M∑
m=1

1{ψ̃(m)(x∗+1)−2ψ̃(m)(x∗)+ψ̃(m)(x∗−1)>κ} (22)
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(a) Housing affordability (b) Poverty rate

Figure 3: Left: The posterior predictive distribution for homeless rates as ZRI/median income
increases. The red points mark estimated inflection points and are connected by dashed red lines
to aid visual clarity of piecewise linear relationships. Right: the posterior predictive distribution
for the homeless rate as a function of extreme poverty. The shaded intervals illustrate the 90%
predictive uncertainty intervals.

We classify x∗ as an inflection point if P
(
ψ̃′′(x∗) > κ

)
> 0.5. When we apply this procedure

with κ ≥ 0.0125, three clear inflection points emerge: 21%, 32%, and 42%. In Figure 3a, we have
marked these inflection points in red and connected them with dashed red lines to aid in visual
clarity. Observe that when ZRI as a percent of median income is between 21-32%, the rate of
increase in the expected homeless rate is not nearly as sharp as the rate of increase from 32 -
42%. A third inflection point occurs at 42%, and the slope of the homeless rate increases even
further until it begins to flatten at 46%. Observe that the expected homeless rate is approximately
piecewise linear over the 21-32%, 32-42%, and 42-46% intervals. We believe that the slope flattens
at 46% because the people most vulnerable to homelessness have already been impacted by the
time affordability reaches 46%. The estimated 32% threshold is particularly noteworthy because
it closely corresponds to the 30% definition of affordable housing used by HUD and the Census
Bureau: when housing costs exceed 30% of income, a family is defined as cost burdened (HUD,
2018). When families become acutely cost burdened, we find that the expected homeless rate
sharply increases.

The uncertainty intervals in Figure 3a are quite wide. When ZRI is 40% of median income,
the 90% predictive interval for the homeless rate spans 0.07% on the low end to 0.8% on the
high end. There are two important reasons for this. First, uncertainty in the quality of homeless
counts C1:n,1:T and CoC-level populations N1:n,1:T is propagated to the posterior predictive. The
second reason is the underlying nature of the CoCs themselves. Many exclusive communities have
high costs of housing but very low homeless rates by design. This accounts for the wide range of
homeless rates across communities with the same level of housing affordability, which we observe
in the raw data (see Figure 1). As a result, the uncertainty intervals in Figure 3a are wide to
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reflect significant variation in homeless rates across different communities with the same level of
housing affordability.

In Figure 3b, we present the cross section of the predicted homeless rate as a function of
extreme poverty for a community where ZRI is 28% of income, the sample average. The predictor
vector is X ′∗ =

[
1 28 x∗

]
. We interpret Figure 3b as following: the expected homeless rate is

0.20% (y-axis) in a community where 8% (x-axis) of the population lives in extreme poverty and
relative housing costs are on par with the national average. The 90% predictive interval ranges
from 0.07% to 0.59%. In Albuquerque, NM (7.75% in extreme poverty, 28.7% for ZRI/median
income) we estimate that in 2017 the homeless rate was 0.32% – again within the predicted
range. Observe in Figure 3b that the relationship between homeless rates and extreme poverty
is characterized by a single line. There are no estimated inflection points in the rate of extreme
poverty, as the slope of the line is uniform.

5.2 Clusters of CoCs

There is significant interest from a policy perspective in identifying a peer group of CoCs likely
to benefit from the same type of intervention. To form these peer groups, we identify frequent
co-occurences of CoCs i and j in the same cluster and compute a pairwise similarity matrix from
MCMC samples of Zi and Zj . Based on the posterior probability of CoCs i and j sharing a
cluster, we utilize the adjusted Rand index of Fritsch and Ickstadt (2009) to compute a point
estimate of the partition π̂386.

We find six different clusters; however, most CoCs (377 of 386) are assigned to clusters
one, two, and three. Observe in Table 2 that, of the first three clusters, cluster one has (on
average) the lowest homeless rate (0.09%), the most affordable housing (26.69%) and the lowest
rate of extreme poverty (5.96%). Of clusters one through three, cluster three has (on average)
the highest homeless rate (0.63%), the least affordable housing (39.44%), and the highest rate of
extreme poverty (7.39%). The largest cluster – both by number of CoCs and by population – is
cluster two, which is home to 50.24% of the U.S. population. While only 13.86% of the total U.S.
population lives in cluster three, it contains 45.59% of the homeless included in the 2017 PIT
counts.

Cluster 1 2 3 4 5 6

Size (# of CoCs) 136 192 49 7 1 1
Share of Total Pop (%) 34.24 50.24 13.86 1.20 0.32 0.14

Share of PIT Count (%) 13.42 40.39 45.59 0.21 0.16 0.23
Homeless Rate (%) 0.09 0.19 0.63 0.04 0.09 0.37
Affordability Rate 26.69 29.81 39.44 27.71 23.50 33.60
Poverty Rate (%) 5.96 6.83 7.39 7.32 4.21 5.47

Table 2: Cluster characteristics in EPA partitioning: The Share of Total Pop (%) and Share of PIT
Count (%) are the percentage of the total US population and HUD counted number of homeless
in each cluster in 2017. Homeless Rate (%) is the mean estimated homeless rate. Affordability is
the cluster-level mean of ZRI as a percentage of median income, and poverty is the cluster-level
mean of the extreme poverty rate.

Although the model contains no specific mechanism for spatial patterns in homeless rates,
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there is clear spatial structure in our cluster assignments. Observe that cluster one is common in
the Midwest, Mid-Atlantic, and parts of the South. Most of New England, Georgia, Florida, the
mountain west and southwest United States are assigned to cluster two. Cluster three occupies
much of the west coast – including San Francisco, Portland (OR), and Seattle – as well as eastern
metropolitan areas in Boston, New York City, Washington, D.C., and Atlanta. The communities
in cluster three, with ZRI at 39% of median income on average, are well above the inflection
point of 32% identified in Section 5.1. Figure 4 is a data-driven confirmation of observations
made by homeless coordinators and policy makers around the country: while homeless counts are
generally falling in most parts of the United States, there are pockets on both coast where states
of emergency have been declared to combat homeless crises.

Figure 4: Map of clusters in the continental United States (left) and the northeast corridor (right)
from Washington, D.C. to Boston, MA. Clusters exhibit strong spatial structure.

Clusters four through six correspond to CoCs that are relatively unique. Cluster four has
seven members in the south, midwest, and upstate New York – the Southeast Arkansas, Houma-
Terrebonne/Thibodaux (Louisiana), Central Tennessee, South Central Illinois, Dearborn/Wayne
County (Michigan), Frankin County (New York), and Binghamtom (New York) CoCs (see Figure
4). In these communities, the average homeless rate is very low (0.04%) considering the high
rate of extreme poverty (7.32%). The sole member of cluster five is Raleigh/Wake County, North
Carolina, which has a low homeless rate, very affordable housing, and low poverty rates (see
Table 2). The sole member of cluster six is the Vallejo/Solano County CoC in the San Francisco
Bay area, which stands out for its relatively high homeless rate despite low poverty rates. The
Vallejo / Solano County CoC has a particularly strong association between the homeless rate and
worsening housing affordability.

5.3 CoC-level latent factors

There are many dimensions of a community. Poverty and housing affordability, while important
covariates of a CoC, may not adequately explain variation in homeless rates – particularly in
the presence of policy interventions aimed at reducing homelessness. To account for the many
unobserved contributors to homelessness in a community, we include community-level dynamic
latent factors βi,1:T in our statistical model. We interpret F ′iβi,t|C1:n,1:T , N1:n,1:T , as the deviation
of the homeless rate in CoC i from the rate expected of CoCs with similar covariates in the same
cluster.
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The Atlanta Continuum of Care provides an illustrative example of the role that latent
factors play in our analysis. Atlanta, a member of cluster three in Section 5.2, has a particularly
high homeless rate (0.93%) for a CoC with housing costs at 34% of median income in 2017.
Relative to peer CoCs in cluster three with similar housing costs, the homeless rate in Atlanta
is significantly higher than expected (see Figure 5a). While the high homeless rate in Atlanta
is partly explained by the fact that 12% of the population lives in extreme poverty, poverty and
housing costs are an incomplete accounting of the factors at play. Observe in Figure 5a that the

(a) Model Fit (b) Latent factors

Figure 5: Atlanta Continuum of Care (GA-500). Left: Model fit for the homeless rate including
latent factors (squares); the model fit for the homeless rate excluding latent factors (diamonds);
and the homeless rates of other CoCs in cluster three (circles). Right: Posterior distribution
for the percentage increase in the homeless rate associated with latent factors in Atlanta from
2011-2017.

estimated homeless rates in 2011-2017 (squares) are significantly higher than the homeless rates
predicted by housing affordability and extreme poverty alone (diamonds). The underprediction
indicates that other factors are contributing to homelessness, which we model with the latent factor
F ′iβi,t. Since latent factors in Atlanta are adding to the homeless rate beyond the rate expected
of peers in cluster three with similar covariates, the posterior distribution F ′iβi,T |C1:n,1:T , N1:n,1:T

concentrates on positive values (Figure 5b). We interpret Figure 5b as the percent increase in
the predicted homeless rate from a model that includes F ′iβi,t compared to the predicted rate

when F ′iβi,t = 0, expressed mathematically as 100 ×
(

1+exp{−X′i,tφi}
1+exp{−F ′iβi,t−X′i,tφi}

− 1
)

. The negative

trend observed in Figure 5b also helps explain why the homeless rate in Atlanta has fallen over
the years 2011 to 2017, despite the fact that housing affordability has deteriorated from 27% of
income in 2011 to 34% in 2017. The important takeaway is that some combination of factors
in Atlanta beyond housing affordability and poverty are contributing to this lowered homeless
rate, and we estimate this net factor for each CoC with the the posterior F ′iβi,t|C1:n,1:T , N1:n,1:T .
The latent factor distribution over time provides a mechanism to evaluate the CoC’s changing
environment for homelessness – including policy interventions.
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6 Discussion

In this paper, we present a Bayesian nonparametric model of community-level homeless rates.
The EPA-based mixture model shares information across CoCs where homeless rates are similarly
related to covariates of a community, and we utilize posterior predictive distributions to identify
structural changes in homeless rates as a function of housing affordability and extreme poverty. A
main finding of the analysis is that the expected homeless rate in a community sharply increases
once ZRI exceeds 32% of the median income – a finding that closely matches the federal definition
of affordable housing (HUD, 2018). We identify three dominant clusters of CoCs that exhibit
common relationships between homelessness and community features. Among the three main
clusters, the lowest homeless rate, most affordable housing, and lowest extreme poverty rate are
found in cluster one. Cluster three communities have, on average, the highest homeless rate, the
least affordable housing, and the most poverty.

Our findings extend prior research that has examined the overall relationship between community-
level factors and homelessness in an important way. We show that the relationship between
homeless rates, housing affordability, and extreme poverty follow a nonlinear functional form.
This stands in contrast to prior studies that have almost exclusively assumed the relationship
between such factors and homelessness to be linear. Our relaxation of this assumption reveals
important policy-relevant findings. For example, we find that maintaining a rent/income ratio
less than 32% may be an important target for communities in order to avoid sharp increases in
homelessness.

The study also provides new insight into geographic patterns of homelessness in the United
States. A relatively small number of cities with large populations (cluster 3) are experiencing
surges in homelessness related to unaffordable housing and extreme poverty. The average housing
affordability metric is higher in cluster three (39.44%) than the 32% break point we identify, which
partly explains rapid growth in the homeless populations of many of these CoCs. Communities in
clusters one and two are not nearly as cost burdened, with average housing affordability measures
of 26.7% and 29.8%, respectively. The majority of the United States is less sensitive to increases
in housing costs than the 49 communities in cluster 3. This may explain why, despite increased
homelessness in cluster 3 cities like Los Angeles, New York, and Seattle, homelessness in the
United States as a whole has declined since the recession of 2008.

Prior research on community-level determinants of homelessness was motivated by policy
considerations: Factors identified as key drivers of higher (or lower) rates of homelessness may
subsequently be used by communities as policy levers to be pulled in their efforts to address
homelessness. However, prior research in this vein operated under the implicit assumption that
pulling the same levers with the same strength and in the same direction will have an identical
effect regardless of the community in question. Our findings suggest that such an assumption
is likely to be incorrect, and that communities would be wise to take a more nuanced approach
in how they contend with structural factors in seeking to reduce homelessness. More concretely,
our identification of six clusters of communities based on rental costs, household income, and
the rate of extreme poverty points to the potential need for at least six distinct approaches for
offsetting the respective impact of these factors on homelessness in a community. Our estimation
of community-level latent factors adds even more nuance that might influence policy strategies.
Comparing the relative contributions of latent factors, housing affordability, extreme poverty, and
the cluster baseline to the overall rate of homelessness in a community can provide additional
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insight into which policy levers may be most impactful for individual communities.
A limitation of the current study is our use of the CoC as the primary observational unit.

Many CoCs are geographically large, with Rhode Island, North Dakota, South Dakota, and
Wyoming each representing statewide CoCs. Housing affordability and extreme poverty measures
at the CoC-level may conceal dynamics of local markets, adding to the inference challenge in
some larger CoCs. While we do not know of better nationwide data on homeless populations,
we recognize the challenge of working with PIT counts to investigate the relationship between
homelessness and community covariates. This research augments but is not a substitute for the
invaluable local knowledge of CoC-coordinators and service organizations in addressing the needs
of homeless populations in individual communities.
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