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DYNAMICS OF HOMELESSNESS IN URBAN AMERICA

By Chris Glynn† and Emily B. Fox‡

University of New Hampshire † and University of Washington ‡

The relationship between housing costs and homelessness has im-
portant implications for the way that city and county governments
respond to increasing homeless populations. Though many analyses
in the public policy literature have examined inter-community vari-
ation in homelessness rates to identify causal mechanisms of home-
lessness (Byrne et al., 2013; Lee et al., 2003; Fargo et al., 2013), few
studies have examined time-varying homeless counts within the same
community (McCandless et al., 2016). To examine trends in homeless
population counts in the 25 largest U.S. metropolitan areas, we de-
velop a dynamic Bayesian hierarchical model for time-varying home-
less count data. Particular care is given to modeling uncertainty in the
homeless count generating and measurement processes, and a critical
distinction is made between the counted number of homeless and the
true size of the homeless population. For each metro under study, we
investigate the relationship between increases in the Zillow Rent In-
dex and increases in the homeless population. Sensitivity of inference
to potential improvements in the accuracy of point-in-time counts is
explored, and evidence is presented that the inferred increase in the
rate of homelessness from 2011-2016 depends on prior beliefs about
the accuracy of homeless counts. A main finding of the study is that
the relationship between homelessness and rental costs is strongest
in New York, Los Angeles, Washington, D.C., and Seattle.

1. Introduction. Counts of people experiencing homelessness in cities
such as Seattle, Los Angeles, and New York reveal alarming year-over-year
increases in the raw numbers of enumerated individuals. In addition to ris-
ing counts of homeless, rental costs in these cities are significantly increasing
as well. The relationship between housing costs and homelessness is a topic
of great public importance and has received considerable attention (Han-
ratty, 2017; Fargo et al., 2013; Byrne et al., 2013; Stojanovic et al., 1999;
O’Flaherty, 1995; Sclar, 1990).

Several challenges exist in quantifying the impact of increased rental
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costs on the size of the homeless population. The first challenge is that
point-in-time homeless counts often occur on a single night in January and
are thus subject to significant sampling variability. The second challenge is
that the accuracy of the count itself is not the same from one year to the next.
Differences in the number of volunteers, weather, and count methodologies
lead to counts that are difficult to compare year-over-year.

These facts beg the question: are homeless populations across the county
increasing? Or do the reported counts simply represent a higher fraction
of the homeless population? Changing count accuracy over time directly
impacts inferred trends in the size of the homeless population. In light of
this fact, we investigate the impact of different count accuracy trajectories
on the inferred change in homelessness rates from 2011-2016.

Inference on the relationship between trends in rental costs and trends in
the homeless population is related to other trend analyses with data quality
challenges (Tokdar et al., 2011; Coles and Sparks, 2006; Cornulier et al.,
2011; Kery and Royle, 2010). Although we observe the number of counted
homeless, we do not observe the true size of the homeless population. Plant-
capture methods (Laska and Meisner, 1993; Schwarz and Seber, 1999) have
demonstrated that homeless counts systematically understate the size of the
total homeless population (Hopper et al., 2008). One strategy to include the
uncounted number of homeless in the analysis is to build a mechanism for
the imperfect counting process into the statistical model, as McCandless
et al. (2016) have done with plant-capture data from Edmonton, Canada.

In this paper, the total size of the homeless population is imputed,
and uncertainty in the total homeless population and count accuracy is
propagated to our assessment of the relationship between rental costs and
homelessness. Our goal is to jointly model the collection of homeless count
time series from the 25 largest metropolitan areas in the United States. In
contrast to McCandless et al. (2016), who treat time-indexed counts as ex-
changeable, we directly model temporal dependence. We develop a Bayesian
dynamic modeling framework to investigate the relationship between the
number of homeless and rent costs subject to different prior beliefs about
count accuracy over time.

The data in our analysis comes from three sources: the U.S. Census
Bureau; the U.S. Department of Housing and Urban Development (HUD);
and the housing website Zillow. The data include the total population, point-
in-time homeless counts, and the Zillow Rent Index (ZRI) for continuums of
care that service the 25 largest metro areas from 2011-2016. The continuum
of care (CoC) is an administrative unit that seeks to integrate local homeless
services, counts, and data under a single community organization (Office
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of Community Planning and Development, Dept. of Housing and Urban
Development, 2009).

Numerous previous studies have utilized inter-community variation in
homelessness rates to identify potential causal mechanisms of homelessness
(Fargo et al., 2013; Byrne et al., 2013; Raphael, 2010; Lee et al., 2003; Early
and Olsen, 2002; Quigley and Raphael, 2001; Quigley et al., 2001a; Trout-
man et al., 1999; Hudson, 1998; Grimes and Chressanthis, 1997; Honig and
Filer, 1993; Burt, 1992; Bohanon, 1991; Appelbaum et al., 1991; Quigley,

1990). Studies that model homelessness rates, defined as total homeless
total population

,

assume that both the numerator and denominator are observed without er-
ror. In practice, there is significant uncertainty in both the numerator and
denominator in any such homelessness rate calculation. To account for that
uncertainty, we directly model time-varying counts within the same com-
munity. Working with time series of count data has two advantages. First,
statistical models of counts more aptly characterize the sampling variability
in the observed data; and second, focusing on within community variation
over time avoids drawing conclusions from data generated across different
municipal and state governments, climates, and social structures. A ma-
jor contribution of our work is the development of a statistical framework
that enables researchers, policymakers, and local continuum coordinators to
address five specific questions for each metro:

(Q1) When adjusting for increases in count accuracy and total
population growth, is the rate of homelessness increasing?

(Q2) If ZRI increases by x%, what are the predicted increases
in the counted and total number of people experiencing
homelessness?

(Q3) How can we quantify uncertainty in the reported point-in-
time counts?

(Q4) Given that C homeless are counted and count accuracy is
imperfect, what is the expected range in the total number
of people experiencing homelessness at a point in time?

(Q5) What is the one-year-ahead forecast of the total homeless
population in 2017?

We identify New York, Los Angeles, Seattle, and Washington, D.C. as
metros where (i) the inferred rate of homelessness significantly increased
from 2011-2016 and (ii) there exists a strong relationship between housing
costs and homelessness. We present evidence that the inferred change in
the homelessness rate from 2011-2016 is sensitive to the trajectory of count
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accuracy. This point is emphasized to encourage researchers, policymakers,
and continuum leaders to carefully quantify their beliefs and uncertainty
about count accuracy.

The prior beliefs that we incorporate in this analysis are informed by
existing literature and discussions with count coordinators, volunteers, and
homelessness experts from around the country. Incorporating the expert
opinions of count coordinators in every metro in the sample will lead to a
more informed study. Our goal in this paper is to advance the statistical
methodology utilized by researchers to analyze data on homelessness. We
view this as a demonstration of a predictive modeling framework that will
benefit from a partnership between private companies with relevant data,
HUD, and local continuums of care.

Homelessness is a complex problem with many potential contributing
factors. Though previous research has consistently identified the cost of
rental housing as a significant predictor of homelessness (see, e.g., Corinth
(2015); Byrne et al. (2013); Quigley et al. (2001b)), we recognize that apart-
ment vacancy rates, social safety net measures, changes in affordable/supportive
housing policy, and local unemployment rates could contribute to increased
homelessness as well. There are many paths to homelessness with compli-
cated interactions among a host of factors; however, data scarcity at the
metro level precludes robust estimation of many correlated covariate effects.
In the presence of limited data, it is essential to focus on a sparse predictive
model. For this reason, we utilize changes in rental costs as our sole predictor
and emphasize that we cannot draw causal conclusions from our analysis.

In Section 2, we discuss the data used in our analysis and necessary
pre-processing steps to account for geographic mismatches between counties
and continuums of care. Section 3 describes the Bayesian dynamic model
that hierarchically shares information across all metros under study. Effi-
cient information sharing, both locally in time and hierarchically across all
metros, facilitates sharper inference on the relationship between rental costs
and homelessness. Our hierarchical dynamic model allows us to estimate
local relationships between homelessness and rental costs whereas the cross-
sectional regression model in Byrne et al. (2013) estimates a single global
effect. We discuss prior information and how that information translates to
prior distributions for model parameters in Section 4. Model fitting with a
custom Markov chain Monte Carlo algorithm is discussed in Section 5, and
Section 6 presents results and addresses questions (Q1) - (Q5). Section 7
concludes with a discussion of our findings.



DYNAMICS OF HOMELESSNESS 5

2. Data. The data in our study comes from three different sources:
the U.S. Census Bureau, HUD, and the housing website Zillow. For the
continuums of care in the 25 largest metros, we observe a collection of three
time series that correspond to (i) the total number of people living in the
metro, (ii) the counted number of homeless in the continuum(s) of that
metro, and (iii) the ZRI for the metro.

For the total population data, we use county-level population estimates
reported by the U.S. Census Bureau (U.S. Census Bureau, 2016). The home-
less counts are the number of individuals experiencing homelessness (both
sheltered and unsheltered) at a point-in-time as reported by HUD (U.S. De-
partment of Housing and Urban Development, 2016). While the first two
series of interest are fairly self-explanatory, the use of ZRI warrants further
discussion.

According to Zillow’s description in Bun (2012), ZRI is computed so
that it does not depend on the set of homes that are currently for rent.
Using proprietary statistical models trained on market rent data, Zillow
estimates the market rent for every home, regardless of whether that home
is currently for rent. The rent estimates of individual homes account for
home attributes, physical characteristics, prior sales, tax assessments, and
geographic location. The ZRI is computed to be the median of the market
rent estimates for the housing stock in each metro.

One potential concern is that Zillow’s estimated rent levels are skewed
high as a consequence of training data from a biased sample of high quality
homes. To mitigate the impact of this potential bias, we focus on percent
differences in ZRI from one year to the next, ∆ZRI, and do not directly
utilize the level of ZRI itself.

One of the challenges in working with the HUD point-in-time data is
that the jurisdiction of the HUD-defined continuums of care do not always
agree with the boundaries of cities or counties. Often, each county will have
a single continuum; however, cases exist where this is not true. In some
counties, there may be more than one continuum (e.g, Cook County, IL and
Fulton County, GA have two). Other times, there may be multiple counties
in a single continuum (e.g., the Denver, CO continuum spans seven different
counties, and the New York City continuum spans five). Table 1 maps the
25 metros under study to the underlying HUD continuum(s) of care. In
each metro, if the continuum does not match up with a single county, we
construct a synthetic unit of analysis by following one of two approaches. If a
county includes multiple continuums, we aggregate homeless totals reported
by each continuum in the county. If a continuum includes multiple counties,
we aggregate population totals reported by the different counties that make
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Table 1
HUD continuums of care and state counties that correspond to the 25 largest

metropolitan areas under study. In cases where more than one continuum of care is in a
county, we aggregate homeless counts to form a synthetic continuum for that county.
When a single continuum spans multiple counties, we construct a population-weighted

ZRI measure and aggregate total population figures across the multiple counties.

Metro area HUD continuum of care Counties
1 New York, NY NY-600 New York, Bronx,

Queens, Kings, Richmond
2 Los Angeles- CA-600, CA-606, Los Angeles

Long Beach-Anaheim, CA CA-607, CA-612
3 Chicago, IL IL-510, IL-511 Cook
4 Dallas-Fort Worth, TX TX-600 Dallas
5 Philadelphia, PA PA-500 Philadelphia
6 Houston, TX TX-700 Harris, Fort Bend
7 Washington, DC DC-500 District of Columbia
8 Miami-Fort Lauderdale, FL FL-600 Miami-Dade
9 Atlanta, GA GA-500, GA-502 Fulton

10 Boston, MA MA-500 Suffolk
11 San Francisco, CA CA-501 San Francisco
12 Detroit, MI MI-501, MI-502 Wayne
13 Riverside, CA CA-608 Riverside
14 Phoenix, AZ AZ-502 Maricopa
15 Seattle, WA WA-500 King
16 Minneapolis-St Paul, MN MN-500 Hennepin
17 San Diego, CA CA-601 San Diego
18 St. Louis, MO MO-500, MO-501 St. Louis
19 Tampa, FL FL-501 Hillsborough
20 Baltimore, MD MD-501, MD-505 Baltimore
21 Denver, CO CO-503 Adams, Arapahoe, Boulder,

Broomfield, Denver, Douglas,
Jefferson

22 Pittsburgh, PA PA-600 Allegheny
23 Portland, OR OR-501 Multnomah
24 Charlotte, NC NC-505 Mecklenburg
25 Sacramento, CA CA-503 Sacramento

up a single continuum and construct a population-weighted ZRI metric.
We also focus on year-over-year changes in the metro-specific ZRI rather

than the absolute level of the ZRI itself. This standardizes the analysis of
rental markets across metros. The result is a data set of synthetic continuums
that properly record the counted number of homeless, total population, and
changes in rent levels in each metro. Because the ZRI is only available after
October 2010, the time series for these three quantities are observed from
2011 - 2016 at an annual frequency. The homeless count data and ZRI are
recorded each January, but the intercensal total population estimates from
the Census Bureau are dated July 1. There is a six month temporal mismatch
in both the homeless count and ZRI and the total metro population series.
To account for this mismatch, we linearly interpolate the census population
estimates to align the data so that the average of year t and t − 1 is an
estimate of the population in January for metro i. Figure 1 presents these
three time series for the All Home King County continuum in Seattle, WA.

The count of homeless in Seattle/King County has dramatically in-
creased since 2014 (Figure 1b); however, the total population (Figure 1a)
also significantly increased over that same time period. The King County,
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Fig 1: Data from the All Home King County (WA) continuum of care from
2011 - 2016. Left: the total population in King County has rapidly increased
in recent years. Increased population creates increased demand for rental
housing and community services. Middle: The number of homeless counted in
King County has dramatically increased since 2014. Right: The median rent,
as measured by the ZRI, demonstrates the same basic pattern of increases
as the count of people experiencing homelessness.

WA data demonstrate the need for modeling the homelessness rate to con-
trol for increases in the total population. The ZRI for King County, shown
in Figure 1c, has similarly increased.

In order to properly calculate the homelessness rate, it is necessary to
account for time-variation in the count accuracy. We define the count accu-
racy to be the probability that a person who is homeless will be accounted
for in the homeless count. If the count accuracy improves over time, more
homeless are likely to be counted. In a scenario where the homeless count
has improved, an increase in the number of homeless counted does not nec-
essarily imply that the total size of the homeless population has increased.
The count may simply represent a higher fraction of the total homeless pop-
ulation.

To account for the homeless not included in the HUD-reported count
data, we impute the total homeless population in each metro from 2011-2016
and examine the impact of different trajectories in the count accuracy on the
inferred homelessness rate. Figure 2 illustrates the distribution of the unob-
served total number of homeless over time in King County, WA if we assume
that the count accuracy does not improve with time and approximately 80%
of homeless are included in the count.

It is reasonable to assume time variation in the count accuracy: in many
continuums, the count accuracy may incrementally improve each year; in
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Fig 2: Counted number of homeless (points) and imputed mean (triangles)
and 95% predicted interval (shaded region) of the total number of homeless
in King County. In this illustration, we assume the expected count accuracy
is constant over time when inferring the distribution of the total number of
homeless.

some continuums, the count accuracy could degrade over time due to lack
of funding; in others, the accuracy may jump at a single year. A primary
objective of our study is to assess the impact of different trajectories in the
count accuracy on the relationship between homelessness rates and changes
in ZRI. The model and prior distribution for different trajectories of the
count accuracy will be discussed further in Sections 3.3 and 4.1.

3. Model. In this section, we develop a joint statistical model for col-
lections of population-level and subpopulation counts. For each metro, we
model (i) the number of homeless counted, (ii) the true number of home-
less, and (iii) the total number of people living in the metro. Of the three
quantities, only two are observed: the homeless counted and the total num-
ber of people. The true number of people experiencing homelessness is not
observed, and we treat it as missing data. The total population of a metro
(as reported by the Census) is modeled as a noisy observation of the true
total population.

Figure 3 is the graphical representation of our dynamic Bayesian hi-
erarchical model. The random variable Ni,t is the total number of people
that live in metro i in year t. The Ni,1:T variables depend on the dynamic
process governing population growth, λi,1:T . The expected increase in pop-
ulation from one year to the next in metro i is modeled by parameter νi,
and the global population growth is modeled by parameter ν̄. Section 3.1
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develops the total population model in greater detail.
The total number of homeless, Hi,t, depends on Ni,t and the probability

of being homeless, pi,t. The log odds of homelessness, ψi,t = log
(

pi,t
1−pi,t

)
, is

modeled by a dynamic process that depends on changes in ZRI. The rela-
tionship between change in ZRI and the log odds of homelessness is modeled
hierarchically by parameter φi with global mean φ̄. The full model for Hi,t

and the dynamics of ψi,t are discussed in Section 3.2. The counted number of
homeless, Ci,t, depends on Hi,t and the probability that a homeless person
is counted, πi,t. We call πi,t the count accuracy and discuss the count data
generating process in Section 3.3.
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Fig 3: Graphical model of the continuum-level homeless population. In metro
i in year t, the total population is modeled by Ni,t, the homeless population
is modeled by Hi,t, and the number of homeless counted is modeled by Ci,t.
The dynamical processes and associated parameters are outlined in Sections
3.1 - 3.3.
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3.1. Total population model. Significant interest lies in homelessness
rates that facilitate comparison across different metros. The total popula-
tion of the metro, or the denominator in a rate calculation, is uncertain.
The intercensal population estimates reported annually by the U.S. Cen-
sus Bureau are noisy. To properly quantify the uncertainty in the estimated
homelessness rate of each metro, it is necessary to account for the uncer-
tainty in the total population size.

A secondary reason for modeling the total population is that it facili-
tates forecasting. In order to forecast the size of the homeless population in
future years, it is necessary to know the size of the future total population.
A dynamic model for the total population enables a model-based forecast of
the homeless population.

The total population size for metro i in year t, Ni,t, is modeled as a
time-indexed Poisson random variable that allows for growth and decay in
the population of each metro.

Ni,t ∼ Poisson(λi,t)(3.1)

λi,t = λ̄iθi,t(3.2)

The Poisson rate, λi,t, is the product of a static scale factor, λ̄i, and
a latent time-varying component θi,t. The dynamics of λi,t are driven by a
dynamic process on the unit interval, θi,t ∈ (0, 1). Modeling λi,t as the prod-
uct of the scaling factor and the dynamic term θi,t provides an intuitive and
computationally tractable dynamic model for Poisson counts. An auxiliary
Poisson-Binomial thinning step for efficient computation is discussed in Sec-
tion 5.1. The unit-interval-constrained dynamic process θi,1:T is constructed
with the logistic transformation and a real-valued stochastic process ηi,1:T .

θi,t =
eηi,t

1 + eηi,t
(3.3)

ηi,t = ηi,t−1 + νi + vi,t, vi,t ∼ N(0, σ2
ηi)(3.4)

The nonstationary ηi,1:T process is a random walk with a metro-specific drift
term, νi. The drift component is aimed at modeling population dynamics in
cities like Seattle and Detroit. In Seattle, the population is rapidly growing
which would correspond to a positive drift (νi > 0). On the other hand,
the population in Detroit has recently decreased, which would correspond
to negative drift (νi < 0). To borrow information across metros, we model
the drift components hierarchically. The parameter ν̄ may be interpreted as



DYNAMICS OF HOMELESSNESS 11

the expected drift in population across all metros.

νi = ν̄ + εi, εi ∼ N(0, σ2
νi)(3.5)

ν̄ ∼ N(0, σ2
ν̄)(3.6)

Because ηi,1:T is nonstationary, the Poisson marginals p(Ni,t|λi,t), . . . ,
p(Ni,T |λi,T ) are not identically distributed. Consequently, Ni,1:T |λi,1:T is a
nonstationary process for the total population counts. While the PoINAR
method of Aldor-Noiman et al. (2016) would be suitable for stationary pop-
ulation modeling, the expected total populations in these metro areas are
clearly changing over time. A second modeling alternative would be to trans-
form the large counts with a natural logarithm and model the transformed
response with a Gaussian dynamic model. Despite the computational sim-
plicity of such a model, we prefer to directly model the count data with
discrete, time-varying distributions to more aptly characterize the uncer-
tainty in the observed data.

3.2. Homeless population model. In a metro with Ni,t total residents,
some small fraction of the residents will be homeless. For this reason, it is
natural to model the total number of people experiencing homelessness, Hi,t,
with a time-indexed binomial distribution. The binomial parameter pi,t is
the unobserved probability that a person in metro i is homeless in year t
(i.e., the homelessness rate).

Hi,t|Ni,t, pi,t ∼ Binomial(Ni,t, pi,t)(3.7)

One of our primary objectives is to include ZRI as a covariate in the
dynamic model for the homeless probability pi,t. We achieve this by modeling
the log odds of homelessness.

pi,t =
eψi,t

1 + eψi,t
(3.8)

ψi,t = ψi,t−1 + φi∆ZRIi,t + wi,t, wi,t ∼ N(0, σ2
ψ)(3.9)

The dynamic process that controls the homelessness rate, ψi,1:T , linearly
depends on the year-over-year rate of change in the ZRI, ∆ZRIi,t.

∆ZRIi,t =
ZRIi,t − ZRIi,t−1

ZRIi,t−1
(3.10)

The regression coefficient φi models the relationship between change in rent
levels and change in homelessness rates. As a concrete example, if ZRI in-
creases by 1% in continuum i from one year to the next, the expected log
odds of homelessness will increase by .01φi.
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The connection between increased rental costs and homelessness rates
is well established in the homelessness literature (Hanratty, 2017; Fargo
et al., 2013; Byrne et al., 2013; Stojanovic et al., 1999; O’Flaherty, 1995;
Sclar, 1990)). To model this positive relationship, the prior distribution for
regression coefficient φi favors values greater than zero but no truncation at
zero is forced. The data inform the degree to which increasing rent levels
are associated with higher homelessness rates. The parameter φi is modeled
hierarchically across metros to borrow strength and provide a more robust
estimation of the relationship between rent increases and homelessness.

φi ∼ N(φ̄, σ2
φi

)(3.11)

φ̄ ∼ N(mφ̄, σ
2
φ̄)(3.12)

As noted at the beginning of Section 3, Hi,t, is not observed. Only
the imperfect homeless count, Ci,t, is observed. In our study, we treat Hi,t

as missing data and impute it to estimate each φi. By modeling the rela-
tionship between ∆ZRIi,t and the imputed Hi,t, we obtain a more reliable
quantification of the uncertainty in the posterior distribution for φi and φ̄.

3.3. Homeless count model. Plant-capture studies and postcount sur-
veys have demonstrated that homeless counts systematically understate the
number of people experiencing homelessness (Hopper et al., 2008). While
single night counts are imperfect, it is not clear that there exist feasible
alternatives. Logistics, expenses, and privacy concerns preclude volunteers
and continuums from counting every person without a home.

We model the imperfection in the homeless counts with a binomial
thinning step. Of the true number of homeless, Hi,t, only Ci,t of them are
counted. It is Ci,t that we observe.

Ci,t ∼ Binomial(Hi,t, πi,t)(3.13)

πi,t ∼ Beta(ai,t, bi,t)(3.14)

The parameter πi,t is the probability that a person experiencing home-
lessness is counted, and it is modeled with a beta distribution. In other
words, πi,t is the accuracy of the count. If πi,t = 1, the count in metro i in
year t is perfectly accurate and every homeless person is counted.

Observe that we model πi,t and πi,t−1 as independent random variables.
While the count accuracy is surely time-varying and may exhibit trends,
we believe there is no clear dependence of πi,t on πi,t−1. Factors driving
count accuracy such as weather and volunteer turnout are unrelated across
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years. Even the count methodology utilized by a continuum may change
from one year to the next. As an example, in 2017, the All Home King
County continuum of care overhauled its count methodology to enhance
the accuracy (Beekman, 2016). Rather than sending volunteers to known
areas where homeless congregate, as in previous years, volunteers covered
each census tract in the county. In addition, volunteers were lead by guides
who were either currently or recently homeless themselves. As a result, the
number of homeless counted in January 2017 was significantly higher than
the number counted in January 2016. Due to changes in methodology, it is
not necessarily accurate to conclude that the size of the homeless population,
Hi,t, dramatically increased. By providing a mechanism for changes in count
accuracy in each metro from one year to the next, it is possible to more
reliably assess the local relationship between increased rental costs and the
homeless population.

The count accuracy itself is an unknown quantity, and since we do
not observe Hi,t, it is not possible to learn πi,t. Instead of trying to learn
πi,t, we marginalize it out so that Ci,t|Hi,t ∼ Beta-binomial(Hi,t, ai,t, bi,t).
Despite the lack of an underlying dynamic model for the count accuracy, we
examine the impact of different time trends in E[πi,t] on posterior inference
for φi. The trends are achieved through specification of the ai,t and bi,t
parameters. Given the sequences of expected values and variances for πi,t –
which we assume are provided by the agencies conducting the counts – the
hyperparameters ai,t and bi,t may be computed from (3.15) and (3.16).

ai,t = E[πi,t]

(
(1− E[πi,t])E[πi,t]

V ar(πi,t)
− 1

)
(3.15)

bi,t =
V ar(πi,t)

E[πi,t]2

(
a2
i,t

E[πi,t]
+ ai,t

)
(3.16)

By modeling each πi,t with an independent beta distribution, it is possible
to easily achieve different types of accuracy trajectories. We discuss three
trajectories of specific interest in Section 4.1.

4. Prior Distributions. With limited data for each metro, it is crit-
ically important to elicit well-informed prior distributions. Information from
data that predates 2011, existing literature, and the expert opinion of home-
less count coordinators have been combined to elicit prior distributions for
four components of the model: (i) the count accuracy that is formalized
through πi,1:T (Section 4.1); (ii) the relationship between homelessness and
rising rental costs, which is modeled with the regression coefficient φi (Sec-
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tion 4.2); (iii) the dynamic process ηi,1:T that governs the total population
(Section 4.3); and (iv) the dynamic process ψi,1:T that governs the total
homeless subpopulation dynamics (Section 4.4).

4.1. Priors for count accuracy. We base our prior distribution for
count accuracy on a study by Hopper et al. (2008), who report evidence
that 60-70% of unsheltered individuals in New York were visible and in-
cluded in the city’s 2005 count. They discuss one plant-capture study where
only 59% of participants were counted. The number of homeless used in
our study includes sheltered homeless as well. Hopper et al. (2008) note that
counts of sheltered homeless are more reliable than the counts of unsheltered
homeless. To elicit our prior for count accuracy, we compute a weighted av-
erage of accuracy for sheltered and unsheltered populations, respectively.
We use homeless counts from 2010, Ci,0, to compute this weighted average
in year t = 0.

E[πi,0] = (0.95)
C sheltered
i,0

Ci,0
+ (0.6)

C unsheltered
i,0

Ci,0
.(4.1)

Our prior expectation is that the probability that a sheltered homeless
person is included in the homeless count is 0.95, which allows for a small dis-
crepancy between the true number and counted number of sheltered home-
less due to administrative and other count errors that may occur. From
the Hopper study, we believe the probability that an unsheltered homeless
person is included in the homeless count to be approximately 0.6. Because
each metro has a different proportion of sheltered and unsheltered homeless,
each metro is assigned a unique baseline prior distribution for count accu-
racy based on the 2010 data. We develop prior distributions for πi,1:T that
exhibit different expected trajectories: constant, linear, and step functions
in time. In each of these cases, V ar(πi,t) = .0015 is chosen so that reasonable
prior mass covers the E[πi,t]± 0.10 interval.

The constant case corresponds to a count that utilizes relatively con-
sistent procedures and resources from one year to the next. In this case,
the mean and variance of the accuracy are constant over time (for all t,
E[πi,t] = E[πi,0]). With E[πi,t] and V ar(πi,t), calculation of ai,t and bi,t fol-
lows directly from (3.15) and (3.16). The prior for πi,1:T with constant count
accuracy in King County, WA is presented in Figure 4a.

The linear case corresponds to a count where the accuracy incremen-
tally improves by a fixed amount (called δi) until it reaches one, as shown in
(4.2). We assume that δi is known and is ideally specified by the agency con-
ducting the count. Alternatively, δi can be adjusted to examine sensitivity of
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Fig 4: Different prior beliefs about the trajectory of πi,1:T in King County,
WA. The solid lines are the expected count accuracy over time, and the
shaded interval corresponds to the 99% prior uncertainty interval. Left: con-
stant count accuracy. Middle: incremental (linear) increases in count accu-
racy. Right: Step in count accuracy.

inference to different accuracy scenarios. This is the approach adopted here.
As an example, to consider an increase of δ̄ in the accuracy of the unshel-
tered homeless count, δi is computed as in (4.3). We assume that sheltered
homeless are always counted with 95% accuracy, and the improvement in
accuracy of δ̄ applies only to the unsheltered count.

E[πi,t+1] = min(E[πi,t] + δi, 1)(4.2)

δi = δ̄

(
C sheltered
i,0

Ci,0

)
(4.3)

In the step scenario, the accuracy dramatically increases at a specific
point in time due to improved count methodology. This is observed in prac-
tice with the All Home King County continuum as discussed in Section 3.3.
In this case, we assume that the year of change for metro i, τi, is known. For
t < τi, E[πi,t] = E[πi,0]. For t ≥ τi, E[πi,t] = E[πi,0] + δi. A step in E[πi,t]
occurs at time τi. Figure 4c illustrates a hypothetical step in count accuracy
for King County in 2014. It is possible that there could be multiple steps for
each metro and that there exists sequences τ1

i , τ
2
i , . . . and δ1

i , δ
2
i , . . . where

steps of different size occur in different years. Because we do not know τi for
each metro, we do not investigate the step scenario further; however, with
consultation of each local coordinator, this may be a very promising area of
future work.
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4.2. Priors for φi and φ̄. We use previous work by Byrne et al. (2013)
to form the basis of our prior distribution for φ̄. Byrne et al. (2013) found
that in metropolitan continuums, when median rent increased by $100, the
expected homelessness rate increased by 6.34%. The average log odds of
homelessness across all continuums in 2010 was f̄0 := −5.5. The average
ZRI across continuums in 2010 was $1534. So a $100 increase in median
rent would translate to a percent change in ZRI of 100

1534 ≈ 6.5%. This leads
to calculation of the expectation of φ̄ based on f̄0, the 6.5% increase in ZRI,
and the expected increase in the homelessness rate of 6.34%:

1 + exp
{
−f̄0

}
1 + exp

{
−f̄0 − $100

$1534mφ̄

} = 1.0634.(4.4)

We calculate that mφ̄ = 0.94. Because of differences in methodology

and data, we use σ2
φ̄

= 0.005 so that there is reasonable prior uncertainty

about φ̄. We let σ2
φi

= 0.05 so that there is modest shrinkage of each local

effect toward the global mean φ̄. To examine the prior uncertainty in the
relationship between increases in ZRI and increases in homelessness implied
by our choices of mφ̄, σ2

φ̄
, and σ2

φi
, we simulate from the marginal prior

distribution for percent changes in the homelessness rate (see Figure 5).
Although we inform our prior using the results from Byrne et al. (2013),

whose methodology we are trying to advance, notice a few things in Figure
5. One is that our prior is diffuse, and it becomes increasingly diffuse with
larger percent increases in ZRI. Second, the inferred posterior concentrates
on different values than the prior, indicating that we are indeed learning
from data. Third, very little posterior mass is placed on values less than
zero, providing evidence for the positive relationship between rising rents
and homelessness. The conclusion is that using the Byrne et al. result is a
useful way to center our prior.

4.3. Prior for ηi,1:T . The sampling distribution for the total popula-
tion, Ni,t, depends on ηi,t through the Poisson rate, λi,t (refer to (3.1) -
(3.3)). Recall that λi,t is the product of a scaling factor, λ̄i, and a dynamic
process on the unit interval, θi,t. We let the expectation of λi,0 be the 2010
population, Ni,0. This is achieved by fixing λ̄i = 2 × Ni,0 and E[θi,0] = 0.5
(i.e., E[ηi,0] = 0). The prior variance of ηi,0 is fixed to be 0.0001, as we
are confident that the Poisson rate of the total population in 2010 is the
observed total population.

We let νi ∼ N(ν̄, 0.01) and ν̄ ∼ N(0, 0.005). The innovation variance of
the ηi,1:T process is fixed to be 0.0001 so that νi primarily drives changes in
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Fig 5: Implied prior and posterior distribution of % change in homelessness
rate with increases in ZRI for an arbitrary metro i. The triangle-marked
(dashed) line is the prior (posterior) mean, and the shaded regions with
solid (dotted) boundaries mark the 95% prior (posterior) credible interval.

the Poisson rate. The implied marginal distribution of Ni,1:T in King County,
WA is presented in Figure 6a. Observe that the distribution is centered at
the 2010 King County population and allows significant uncertainty over
the six year period. While the prior variance on each ηi,t is relatively small,
the large magnitude of the scaling factor, λ̄i, results in a relatively diffuse
marginal distribution for Ni,t.

4.4. Prior for ψi,1:T . We utilize the counted number of homeless in
2010 to specify the prior expectation E[ψi,0]. The conditionally binomial
sampling distribution for Hi,0|ψi,0, Ni,0 in (3.7) yields the expectation

E[Hi,0|ψi,0, Ni,0] =
1

1 + e−ψi,0
Ni,0.(4.5)

Solving for ψi,0 results in (4.6).

ψi,0 = log

(
E[Hi,0|ψi,0]/Ni,0

1− E[Hi,0|ψi,0]/Ni,0

)
(4.6)

Because we observe the noisy total population Ni,0 from the Census
estimate in 2010, we can compute a value for ψi,0 given the expectation
E[Hi,0|ψi,0]. Though we do not observe E[Hi,0|ψi,0], we use an approxima-
tion to center the prior distribution of ψi,0 and compensate for the ap-
proximation with moderate prior uncertainty. We approximate the expected
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Fig 6: Marginal prior distributions for Ni,t and Hi,t|ZRI1:T in King County,
WA. The solid lines are the the prior means and the shaded regions are the
95% prior uncertainty intervals. Left: implied prior distributions for the total
population, Ni,1:T . Right: Prior for total homeless population, Hi,1:T |ZRI1:T .
The upward trend in the implied prior for the total homeless population is
due to observed increases in ZRI.

total number of homeless in 2010 as an expected inflation of the observed

count, E[Hi,0|ψi,0] ≈ E
[

1
πi,0

]
Ci,0. Ci,0 is the 2010 homeless count value and

E[1/πi,0] is the expectation of the reciprocal count accuracy in 2010. The
multiplier E[1/πi,0] is evaluated by Monte Carlo simulation. This leads to a
prior expectation as defined in (4.7).

E[ψi,0] := log

 E
[

1
πi,0

]
Ci,0/Ni,0

1− E
[

1
πi,0

]
Ci,0/Ni,0

(4.7)

The time zero variance is chosen to be σ2
ψ0

= 0.01, as this provides a
three standard deviation interval of ±0.3 around the prior mean. The result
is that ψi,0 ∼ N(E[ψi,0], σ2

ψ0
). One reason that the prior specification of ψi,0

is important is that the implied prior distribution for the total homeless
population, Hi,t, depends on ψi,t (refer to (3.7) and (3.8)). The implied
prior distribution for Hi,1:T |ZRI1:T is presented in Figure 6b. The 95% prior
interval spans a very reasonable range for each Hi,t.

The innovation variance of the dynamic process is fixed to be σ2
ψ = 0.001

(see (3.9)). We observe in synthetic data experiments that the innovation
variance of ψi,1:T must be small in order to accurately learn φi and φ̄. If σ2

ψ

is large relative to V ar (φi∆ZRIi,t), changes in the homelessness rate are
modeled as noise in ψi,t rather than driven by changes in ZRI. The ratio
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V ar(φi∆ZRIi,t)

σ2
ψ

can be thought of as a signal-to-noise ratio for ψi,t.

We also observe in synthetic data experiments that reliably inferring
ψi,1:T and φi requires that a metro’s homelessness rate exceed 0.05% of the
total population. Because pi,t is the logistic transformation of ψi,t (see (3.8)),

the derivative
dpi,t
dψi,t

→ 0 as |ψi,t| increases. Flat tails of pi,t as a function of

ψi,t mean that in metros with very low homeless rates, practically observed
changes in homeless counts are consistent with a wide range of changes
in ZRI. Under such conditions, it is not possible to reliably estimate φi.
Inference on φi degrades along the continuum of decreasing ψi,t, but we set
a limit based on our empirical studies. We do not trust inference for metros
where the homelessness rate is less than 0.05%, or when ψi,t < −7.6.

5. Markov chain Monte Carlo. Our objective is to sample from
the posterior distribution

p(H1:25,1:T , η1:25,1:T , ψ1:25,1:T , φ1:25, φ̄, ν1:25, ν̄|N1:25,1:T , C1:25,1:T ).(5.1)

To sample from the posterior, we develop a custom Pólya-Gamma Gibbs
sampler for dynamic Bayesian logistic regression (Polson et al., 2013; Windle
et al., 2013, 2014). The Pólya-Gamma augmentation strategy allows us to
harness a forward filtering and backward sampling (FFBS) algorithm that
is commonly used to fit Bayesian dynamic models (Fruhwirth-Schnatter,
1994; Carter and Kohn, 1994). We found that a burn-in of 25,000 samples
and 50,000 samples collected after burn-in were sufficient for reproducible
inferences. The MCMC simulation took approximately 4 hours to run on a
MacBook Pro.

5.1. Sampling steps. There are ten different sampling steps required
in the MCMC algorithm. The first step is for an auxiliary random vari-
able whose only purpose is to facilitate computation when Ni,t|λ̃i, θi,t ∼
Poisson(λ̃iθi,t) (refer to (3.1) and (3.2)). To construct this marginal distri-
bution, we model the auxiliary Zi,t ∼ Poisson(λ̃i) and the observed Ni,t

conditionally binomial, Ni,t|Zi,t, θi,t ∼ Binomial(Zi,t, θi,t). The Binomial-
Poisson thinning strategy results in the desired marginal distribution for
Ni,t and a computationally tractable method for making inference on ηi,t,
νi, and ν̄. The full conditional for the auxiliary Zi,t is shown in Step 1.

Step 2 and Step 6 use Pólya-Gamma data augmentation to allow a
forward filtering backward sampling strategy. Step 3 and Step 7 sample the
auxiliary Pólya-Gamma variables ωi,t and ζi,t. The collection of auxiliary
variables Z1:25,1:T , ω1:25,1:T , and ζ1:25,1:T are numerically integrated out from
the posterior by discarding posterior samples. Each sampling step is outlined
below.
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1. For each i, t, sample the auxiliary Zi,t from a shifted Poisson by first
sampling

j = Zi,t − Ni,t|λ̃i, θi,t ∼ Poisson
(

(1− θi,t)λ̃i
)

and then fixing Zi,t =

j +Ni,t.
2. For each i, sample the dynamic process that governs total population

growth, ηi,1:T |Ni,1:T , ωi,1:T , with an FFBS algorithm.

(a) compute forward filtered distribution ηi,t|Ni,1:t, Zi,1:t, νi, ωi,1:t ∼
N(mi,t, Si,t)

• Si,t :=
(
ωi,t + 1

Si,t−1+σ2
η

)−1

• mi,t := Si,t

(
Ni,t − 1

2Zi,t +
mi,t−1+νi
Si,t−1+σ2

ν

)
(b) sample recursively ηi,t|ηi,t+1, Ni,1:t, ωi,1:t ∼ N(m̃i,t, S̃i,t)

• S̃i,t :=
(

1
Si,t

+ 1
σ2
η

)−1

• m̃i,t := S̃i,t

(
mi,t
Si,t

+
ηi,t+1−νi

σ2
η

)
3. For each i, t, sample the auxiliary Pólya-Gamma random variates to

augment the total population variable, ωi,t|Zi,t, ηi,t ∼ PG(Zi,t, ηi,t).
4. For each i, sample the parameter controlling expected population growth

in metro i, νi|ν̄, ηi,1:T ∼ N(m̃νi , σ̃
2
νi).

• σ̃2
νi :=

(
1

C0+σ2
η

+ T−1
σ2
η

+ 1
σ2
νi

)−1

• m̃νi := σ̃2
νi

(
ηi,1

C0+σ2
η

+ 1
σ2
η

∑T
t=2(ηi,t − ηi,t−1) + ν̄

σ2
νi

)
5. Sample the expected total population growth globally across metros,

ν̄|ν1:25 ∼ N
((

N
σ2
νi

+ 1
σ2
ν̄

)−1
1
σ2
νi

∑25
i=1 νi,

(
N
σ2
νi

+ 1
σ2
ν̄

)−1
)

.

6. For each i, sample the dynamic process for the log odds of homeless-
ness, ψi,1:T |Ni,1:T , Hi,1:T , φi, ωi,1:T , with an FFBS algorithm.

(a) compute forward filtered distribution
ψi,t|Ni,1:t, Hi,1:t, ζi,1:t ∼ N(fi,t, qi,t)

• qi,t :=

(
ζi,t + 1

qi,t−1+σ2
ψ

)−1

• fi,t := qi,t

(
Hi,t − 1

2Ni,t +
fi,t−1+φi∆ZRIi,t

qi,t−1+σ2
ψ

)
(b) sample recursively ψi,t|ψi,t+1, Ni,1:t, Hi,1:t, ζi,1:t, φi ∼ N(f̃i,t, q̃i,t)

• q̃i,t :=

(
1
qi,t

+ 1
σ2
ψ

)−1
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• f̃i,t := q̃i,t

(
fi,t
qi,t

+
ψi,t+1−φi∆ZRIi,t

σ2
ψ

)
7. For each i, t, sample the auxiliary Pólya-Gamma random variates to

augment the total homeless variable, ζi,t|Ni,t, ψi,t ∼ PG(Ni,t, ψi,t).
8. For each i, sample the parameter governing the relationship between

change in ZRI and change in homelessness in metro i, φi|ψi,1:T , φ̄ ∼
N (mφi ,Σφi).

• Σφi :=

(
(∆ZRIi,1)2

σ2
ψ0

+σ2
ψ

+
∑T
t=2(∆ZRIi,t)

2

σ2
ψ

+ 1
σ2
φ

)
• mφi := Σφi

(
φ̄
σ2
φi

+
∆ZRIi,1(ψi,1−fi,0)

σ2
ψ0

+σ2
ψi

+
∑T
t=2 ∆ZRIi,t(ψi,t−ψi,t−1)

σ2
ψi

)
9. Sample the global mean parameter for the change in ZRI and change

in homelessness,

φ̄|φ1:25 ∼ N

((
25
σ2
φi

+ 1
σ2
φ̄

)−1(
1
σ2
φi

∑25
i=1 φi +

mφ̄
σ2
φ̄

)
,

(
25
σ2
φi

+ 1
σ2
φ̄

)−1
)

.

10. For each i, t, sample the total number of people experiencing homeless-
ness in metro i and year t, Hi,t, from p(Hi,t|Ni,t, Ci,t, pi,t, ai,t, bi,t) ∝

Γ(Hi,t+1)
Γ(Ci,t+1)Γ(Hi,t−Ci,t+1)

Γ(Ci,t+ai,t)Γ(Hi,t−Ci,t+bi,t)
Γ(Hi,t+ai,t+bi,t)

Γ(ai,t+bi,t)
Γ(ai,t)Γ(bi,t)

...

×
(Ni,t
Hi,t

)
p
Hi,t
i,t (1− pi,t)(Ni,t−Hi,t).

Sampling Hi,t in Step 10 incorporates the beta-binomial marginal dis-
tribution for homeless counts, and it does not depend on πi,t but instead
on ai,t and bi,t. Sampling Hi,t requires sampling from a discrete distribution
with support [Ci,t, Ni,t]. This large range creates a computational bottleneck
as it involves evaluating densities at each value in the support. In practice,
though, posterior probability is concentrated on values much closer to the
lower end of the support. It is possible to speed up computation by setting
a threshold after which the support is truncated. Once posterior probabil-
ity falls below 1 × 10−8, we stop evaluating the densities and truncate the
support.

5.2. Posterior Predictive Distributions. To examine the predicted in-
crease in total homeless populations associated with increases in ZRI, we
utilize the posterior predictive distribution for the total homeless population
in each metro, Hi,t|C1:25,1:T , N1:25,1:T . The main quantify of interest is the
distribution of the increase in the homeless population when the observed
change in ZRI, ∆ZRIi,t, increases by an x > 0. The increase is modeled

by
(
Hx
i,t −Hi,t

)
|C1:25,1:T , N1:25,1:T , which is the difference between the pre-

dicted homeless total for a change in ZRI of ∆ZRIi,t + x and the baseline



22 GLYNN AND FOX

prediction at ∆ZRIi,t.
We draw samples from this posterior with a three step procedure that

approximates the integral:

p
(
Hx
i,t −Hi,t|N1:25,1:T , C1:25,1:T

)
=

∫
p
(
Hx
i,t −Hi,t|ψi,t, φi, N1:25,1:T , C1:25,1:T

)
p (ψi,t, φi) dψi,tdφi.(5.2)

The procedure relies on the mth posterior sample of (i) the relationship

between ZRI and homelessness, φ
(m)
i , (ii) the log odds of homelessness, ψ

(m)
i,t ,

and (iii) the Census reported estimate of the total population Ni,t. The
procedure is detailed below.

1. Construct the mth sample of log odds of homelessness where ∆ZRIi,t
is increased by x.

(5.3) ψ
(m),x
i,t = ψ

(m)
i,t + φ

(m)
i x

2. Generate a prediction for the total homeless population at ∆ZRIi,t+x
by sampling

(5.4) H
(m),x
i,t ∼ Binomial(Ni,t, p

x
i,t)

where pxi,t is the same logistic transformation of ψxi,t as in (3.8).
3. Compute the difference

(5.5) H
(m),x
i,t −H(m)

i,t

We go one step further and also examine the predicted change in counted

homeless under increased ZRI,
(
C∗,xi,t − C∗i,t

)
|C1:25,1:T , N1:25,1:T . Samples from

this distribution are drawn by thinning the mth MCMC samples H
(m),x
i,t and

H
(m)
i,t with a beta-binomial step

C
(m),∗,x
i,t ∼ Beta−Binomial

(
H

(m),x
i,t , ai,t, bi,t

)
(5.6)

and computing the difference C
(m),∗,x
i,t − C(m),∗

i,t .

5.3. Reproducible MCMC inference. We verify that our MCMC sim-
ulation generates reproducible inference about the relationship between in-
creases in homelessness and increases in ZRI by examining the posterior
distribution for φi. Ten different MCMC simulations are run, and inferences
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from two simulations j and j′ are compared by computing |E[φ
(j)
i ]−E[φ

(j′)
i ]|.

Figure 7 illustrates the largest deviation across simulations by computing

maxj |E[φ
(j)
i ] − E[φ

(1)
i ]| for each metro. Each point in the histogram corre-

sponds to the largest difference in posterior mean in reference to the first
simulation for each of the 25 metros. The small values of these maximum dif-
ferences in Figure 7 give us confidence that our MCMC simulation generates
reproducible inferences.

0
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Max difference for all locations
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t

Fig 7: The maximum difference in posterior means of φ1, . . . , φ25 for 10 differ-
ent MCMC simulations. Each of the 25 points in the histogram corresponds

to maxj |φ(j)
i −φ

(1)
i |, for each of the 25 metros denoted by i. The superscript

index j denotes the MCMC simulation. The very small differences indicate
that our MCMC simulations generate reproducible inference in φi.

6. Results. We seek to answer five questions, (Q1) - (Q5). Each of
these questions is answered (in order) in Sections 6.1 - 6.5. In Section 6.1, we
examine changes in homelessness rates from 2011-2016 across all metropoli-
tan areas. In Section 6.2, the inferred relationship between increased ZRI
and increases in homelessness is presented. Posterior predictive distributions
for additional homeless counts are presented in Section 6.3, and the imputed
distributions for the total number of homeless in each metro are presented
in Section 6.4. Section 6.5 discusses our forecasts for the total homeless
populations in 2017.

6.1. Percent changes in the homelessness rate. The inferred increases
in homelessness rates from 2011 - 2016 are illustrated in Figure 8a. We
present results under two scenarios for the trajectory of the count accuracy:
(i) the mean of the count accuracy is constant over time (i.e. δ̄ in (4.3) is
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zero); and (ii) the mean of the unsheltered count accuracy increases by 2%
annually until it reaches 100% (i.e. δ̄ = .02).

Metros where the rate of homelessness almost certainly increased from
2011-2016 when δ̄ = 0 include New York, Los Angeles, Washington, D.C.,
Seattle, San Francisco, and Boston. For these cities, the 95% posterior credi-
ble interval for the percent change in the homelessness rate is bounded below
by 0%, giving confidence that these homelessness rates did in fact increase.
For each of these metros, the posterior mean increase in the homelessness
rate exceeds 10%. In response to its growing homeless population, the City
of Seattle has declared an official state of emergency (Beekman and Broom,
2015). We adopt this moniker and characterize these metros as in similar
states of emergency.

Metros where the homelessness rate almost certainly decreased when
δ̄ = 0 include Phoenix, St. Louis, Portland, Detroit, Baltimore, Atlanta,
Charlotte, Houston, Riverside, and Tampa. For these cities, the 95% pos-
terior credible interval for the percent change in the homelessness rate is
bounded above by 0%, giving confidence that the homelessness rate did in
fact decrease. For all but Phoenix and St. Louis, the posterior mean decrease
in the homelessness rate exceeded 10%, and it seems real progress has been
made in reducing homelessness in this group.

A third group of cities exists where the percent change in the home-
lessness rate has neither significantly increased nor decreased in either sce-
nario. The 95% posterior credible interval for the change in the homelessness
rate includes zero in Miami, Minneapolis, Dallas, Philadelphia, Sacramento,
Pittsburgh, Denver, Chicago, and San Diego. The situation remains largely
unchanged in this group, and the current homelessness rate is the status
quo.

Observe in Figure 8a that New York and Los Angeles exhibit differ-
ent sensitivities to change in the count accuracy over time. In New York,
a city with a predominantly sheltered population, the inferred percent in-
crease is essentially unchanged between the two scenarios. In Los Angeles,
a warm-weather city with a large unsheltered population, the difference be-
tween the δ̄ = 0 and δ̄ = 0.02 cases is large, as demonstrated by separation
of the posterior means. Equation (4.3) demonstrates that, in metros with
large unsheltered populations, a δ̄ increase in the accuracy of an unsheltered
homeless count leads to large changes in the overall count accuracy, πi,t.

In Figure 8b, we examine how inference on the change in homelessness
rates from 2011 - 2016 can change with different values of δ̄. We focus on
Los Angeles, above considered in a “state of emergency”and see that the
posterior distribution for the 2011-2016 change in the homelessness rate
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Fig 8: Left: Posterior distribution in percent change in homelessness rate
from 2011 to 2016. The middle point in each segment is the posterior mean
and the line segment encompasses the 95% posterior credible interval. For
each metro, there is a posterior presented when the count accuracy is mod-
eled with a constant mean over time (δ̄ = 0) and a posterior when the
count accuracy of unsheltered homeless improves by 2% each year (δ̄ = .02).
Right: Sensitivity of the percent increase in homelessness rate from 2011 -
2016 to different choices of δ̄ in Los Angeles. The vertical line marks the
count accuracy in 2011

depends on the count accuracy. If the expected count accuracy in LA in
2011 was 0.69 and it remained unchanged from 2011 - 2016 (i.e., δ̄ = 0),
Figure 8b shows that the homelessness rate almost certainly increased over
that time, with a posterior expected increase of 13.4%. On the other hand,
if LA had improved its counting method over this time frame, the increased
homeless counts could be explained away by the increased count accuracy
rather than an actual increase in the homelessness rate. For example, if
the expected count accuracy in LA in 2011 was 0.69 and it incrementally
increased to 0.91 over that 6 year window (i.e., δ̄ = 6%), it is likely that
the homelessness rate decreased, with a posterior expected change in the
homelessness rate of -5.9%. That is, the increased homeless count in LA is
entirely explained by improvements in the count accuracy, and the overall
homeless rate likely decreased over the six year window. The conclusion
again is that any inferences drawn about changes in homeless populations
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(b) Los Angeles

Fig 9: Posterior predictive distributions of increased homeless counts
(C∗,xi,t − C∗i,T |C1:25,1:T , N1:25,1:T ) and total homeless populations (Hx

i,t −
Hi,T |C1:25,1:T , N1:25,1:T ) associated with increases in ZRI for both New York
and Los Angeles when δ̄ = 0. The dashed line and shaded interval with
dotted boundaries correspond to the posterior mean and 95% predictive
interval of increases in the homeless count. The triangle-marked line and
interval with solid boundaries correspond to the posterior mean and 95%
predictive interval of increases in the total homeless population.

are highly sensitive to assumptions about the count accuracy. Sensitivity
analyses similar to the one presented in Figure 8b are presented for each
metro in Glynn and Fox (2018), an online supplement to this article.

6.2. Rental costs and homelessness. To examine the predicted increase
in homelessness and homeless counts as ZRI increases, we focus on the pos-

terior predictive distributions
(
Hx
i,t −Hi,t

)
|C1:25,1:T , N1:25,1:T and(

C∗,xi,t − C∗i,t
)
|C1:25,1:T , N1:25,1:T . Section 5.2 provides complete details for

sampling from these distributions.
We find that, for a fixed percent increase in ZRI of x = 10%, the

predicted increase in homelessness is largest in New York and Los Angeles
(see Figure 10). Predicted increases in homeless counts are robust to whether
we set δ̄ = 0 or δ̄ = .02, as one would hope; however, the predicted count
increases map to different increases in total homelessness under different
prior beliefs about πi,t. In Figure 9, the posterior predictive distributions
for the increase in total and counted homeless are illustrated for different
increases in ZRI in New York and Los Angeles.
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In New York, the large sheltered population and high count accuracy
imply that the distributions of increased counts and total homeless popu-
lations are nearly identitical (Figure 9a). If the ZRI in New York increases
by x = 10%, given 2016 levels of homelessness, we expect that the homeless
population will increase by 5,413 people, with 95% posterior probability of
the homelessness increase in New York being more than 2,896 people and
less than 10,523 people. In Los Angeles, the lower overall count accuracy
implies more separation between the distributions of increased counted and
total homeless (Figure 9b). Under the same x = 10% increase in ZRI in
Los Angeles, we expect that 3,536 people will become homeless, with 95%
posterior probability of more than 1,106 people and less than 8,554 people.

Figure 10a summarizes the predicted increase in the total homeless pop-
ulation when ZRI increases by x = 10% across all metros. The distributions
of increases presented in Figure 10 account for the different sizes of metros
with binomial sampling as shown in (5.4) and (5.6) (i.e. the values Ni,t are
larger for larger metros). We expect the largest increases to occur in the
largest metros (New York and Los Angeles), and this is confirmed by our
analysis of the data. For the increase in the homeless population associ-
ated with increases in ZRI, we report the one-sided 95% posterior credible
interval to shed light on the right tail of the distribution.
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Fig 10: Predicted increase in homeless population when ZRI increases by

x = 10% in 2016. The points are the posterior mean of
(
Hx
i,T −Hi,T

)
|C1:25,1:T , N1:25,1:T . The line segment spans the one-sided (right-tail) 95%
posterior credible interval. In the left panel, results are presented for all
metros. In the right panel, New York and Los Angeles are excluded for more
careful inspection of the remaining 23 metros.
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We note Seattle and Washington, D.C. as metros of interest, even
though the 95% credible intervals for the predicted increase in the homeless
population cross the zero threshold in Figure 10b. In Seattle the posterior
mean increase in the homeless population is 479 people and the posterior
probability that the increase is positive is 0.942. A similar story emerges in
Washington, D.C., where the posterior mean increase in homeless population
is 386 people and the posterior probability that the increase is positive is
0.941. With at least 0.94 posterior probability of an increase in the homeless
population, Seattle and Washington D.C. exhibit a meaningful statistical re-
lationship between increased ZRI and increased homelessness. The posterior
probability of an increase in the homeless population when ZRI increases
by 10% is less than 0.9 for all metros but New York, Los Angeles, Wash-
ington, D.C., and Seattle. While the expected increases in homelessness in
some metros may be large (e.g., San Diego), the variance in the posterior
predictive distribution precludes us from confidently concluding that the
predicted changes in the population are strictly positive. See Table 2 for
posterior probabilities of homeless increases associated with ZRI increases
of 10% in each metro. Predicted increases in homelessness as a function of
increases in ZRI, as shown in Figure 9 for New York and Los Angeles, are
available for each metro in the supplement (Glynn and Fox, 2018).

6.3. Additional homeless counts. The number of homeless that HUD
reports in each continuum is from an annual point-in-time (PIT) count con-
ducted in January. An important limitation of PIT counts is that no stan-
dard errors or other measures of uncertainty are reported, leaving decision
makers without important context. One way of assessing sampling variability
in PIT data is to construct posterior predictive distributions for the outcome
of additional counts, allowing count coordinators to quantify uncertainty in
the PIT data.

In this section, we report the posterior predictive distribution for this
hypothetical second homeless count. The prediction, denoted by C∗i,t|C1:25,1:T

, N1:25,1:T , conditions on both the observed counts and the census reported
total populations in all metros. Figure 11a presents the predicted outcome
from additional homeless counts for San Francisco, a metro with one of
the larger increases in the homelessness rate from 2011-2016. Observe that
the posterior mean of C∗i,t|C1:25,1:T , N1:25,1:T is a filtered and retrospectively
smoothed quantity. The smoothing is apparent in 2013, when the HUD
reported count appears to be an outlier relative to prior and subsequent
HUD reported counts. Though the 2013 posterior mean is pulled slightly
upward toward the reported count, the model does not overfit the data. In
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the remaining years, the posterior mean closely tracks the reported HUD
counts. In 2016, the HUD reported count of homeless in San Francisco was
6,996. If a second count were conducted in 2016, we expect the counted
number of homeless would have been 6,991, with 95% posterior probability
of being more than 6,090 and less than 7,916.
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Fig 11: Predicted homeless totals for San Francisco, CA. Left: Predicted
number of counted homeless in additional (hypothetical) counts and pre-
dicted number of total homeless in San Francisco. The ‘x’marks are the
actual HUD reported counts, and the solid line with points is the filtered
and retrospectively smoothed mean of the posterior predictive distribution
C∗i,1:T |C1:25,1:T , N1:25,1:T . The line with triangles is the mean of the posterior
predictive distribution Hi,1:T |C1:25,1:T , N1:25,1:T , and the associated shaded
region is the 95% predictive interval. Right: Predicted number of total home-
less in San Francisco, CA in 2017, Hi,T+1|C1:25,1:T , N1:25,1:T , ZRIi,T+1 The
line with triangles is the mean of the out-of-sample prediction for 2017, and
the shaded region with dotted boundaries is the out-of-sample predictive
interval.

The predictive distribution C∗i,t |C1:25,1:T , N1:25,1:T provides policymak-
ers and resource constrained counting agencies with a principled and data-
driven way of conducting synthetic “additional”homeless counts to quantify
uncertainty in the PIT data. The posterior predictive distributions for ad-
ditional 2016 counts in all metros are summarized in Table 2. Each metro
has its own version of Figure 11a in the online supplement (Glynn and Fox,
2018).
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Table 2
Summary of posterior distributions across metros for 2016. The number of counted

homeless reported by HUD is presented the first column. The Synthetic counts column
corresponds to the posterior predictive distribution for a second hypothetical count in

metro i in 2016, C∗i,T |C1:25,1:T , N1:25,1:T . The Total homeless column corresponds to the
posterior predictive distribution for the total number of homeless in metro i in 2016,
Hi,T | C1:25,1:T , N1:25,1:T . The Forecasted homeless (2017) column is the posterior
predictive distribution for the total homeless population in 2017, Hi,T+1| C1:25,1:T ,
N1:25,1:T . In all cases, the first number reported is the posterior mean, with the 95%

posterior predictive interval in parenthesis. The Prob column is the posterior probability
that the predicted change in the homeless population when rent rises 10% is greater than

zero given that δ = 0: P (
(
H10
i,T −Hi,T > 0

)
|C1:25,1:T , N1:25,1:T ).

Metro HUD Synthetic count Total homeless Forecast (2017) Prob
New York 73,523 74,272 (66,027, 80,959) 79,348 (75,317, 84,222) 79,404 (72,716, 86,775) 0.999
Los Angeles 46,874 45,315 (39,144, 51,621) 65,585 (60,565, 70,919) 67,285 (60,145, 75,034) 0.993
Chicago 6,841 7,231 (6,399, 8,025) 8,209 (7,665, 8,833) 8,223 (7,434, 9,087) 0.849
Dallas 3,810 3,688 (3,288, 4,056) 4,180 (3,981, 4,449) 4,301 (3,888, 4,769) 0.829
Philadelphia 6,112 6,045 (5,386, 6,626) 6,645 (6,316, 7,074) 6,705 (6,109, 7,373) 0.892
Houston 4,031 4,709 (4,202, 5,137) 5,565 (5,245, 5,708) 5,907 (5,387, 6,433) 0.114
Wash., D.C. 8,350 8,167 (7,291, 8,858) 8,719 (8,415, 9,216) 8,907 (8,176, 9,733) 0.941
Miami 4,235 4,274 (3,787, 4,739) 4,919 (4,615, 5,265) 4,993 (4,515, 5,514) 0.879
Atlanta 4,546 5,011 (4,388, 5,618) 5,689 (5,221, 6,172) 5,781 (5,137, 6,471) 0.404
Boston 6,240 6,289 (5,585, 6,858) 6,687 (6,345, 7,110) 6,807 (6,208, 7,459) 0.892
San Francisco 6,996 6,991 (6,090, 7,916) 9,547 (8,859, 10,328) 9,610 (8,669, 10,644) 0.747
Detroit 2,612 2,871 (2,515, 3,216) 3,112 (2,851, 3,397) 3,121 (2,778, 3,495) 0.890
Riverside 2,165 2,574 (2,281, 2,846) 3,518 (3,376, 3,582) 3,638 (3,325, 3,959) 0.709
Phoenix 5,702 5,940 (5,273, 6,593) 6,997 (6,597, 7,497) 7,192 (6,513, 7,954) 0.815
Seattle 10,730 10,604 (9,350, 11,889) 13,207 (12,355, 14,245) 13,688 (12,311, 15,273) 0.943
Minneapolis 3,056 3,379 (2,957, 3,763) 3,631 (3,328, 3,953) 3,771 (3,348, 4,227) 0.920
San Diego 8,669 8,933 (7,795, 10,114) 11,899 (11,084, 12,898) 12,164 (10,908, 13,595) 0.817
St. Louis 1,713 1,750 (1,544, 1,940) 1,902 (1,778, 2,057) 1,939 (1,731, 2,167) 0.833
Tampa 1,817 2,068 (1,819, 2,296) 2,579 (2,397, 2,711) 2,634 (2,366, 2,908) 0.171
Baltimore 3,488 3,578 (3,174, 3,965) 4,045 (3,784, 4,348) 4,080 (3,685, 4,512) 0.783
Denver 5,728 6,026 (5,318, 6,727) 6,685 (6,210, 7,301) 6,813 (6,135, 7,603) 0.578
Pittsburgh 1,156 1,332 (1,163, 1,466) 1,423 (1,297, 1,517) 1,458 (1,292, 1,626) 0.832
Portland 3,914 4,044 (3,537, 4,559) 5,175 (4,780, 5,614) 5,267 (4,669, 5,927) 0.598
Charlotte 1,818 2,055 (1,804, 2,272) 2,248 (2,065, 2,402) 2,313 (2,058, 2,583) 0.489
Sacramento 2,500 2,611 (2,299, 2,918) 3,195 (2,975, 3,433) 3,300 (2,948, 3,682) 0.834

6.4. Imputed total number of homeless. Imperfect count accuracy leads
to count totals that are less than the size of the total homeless population.
By modeling the mechanism of count accuracy, we are able to include the un-
counted number of homeless in our estimate of the size of the total homeless
population. In this section, we predict the total number of homeless in each
metro and year. We report the posterior distribution Hi,t|C1:25,1:T , N1:25,1:T .
Observe that the posterior distribution does not condition on the count
accuracy parameter, πi,t. The count accuracy has been integrated out; how-
ever, the variance of Hi,t|C1:25,1:T , N1:25,1:T is inextricably linked to the prior
variance of the count accuracy, πi,t. In this analysis, we fixed the prior vari-
ance to be 0.0015 so that prior mass would span the ±0.1 interval. Though
it is appealing to specify a diffuse prior for count accuracy, we found in
practice that such a prior does not provide sufficient regularization. In set-
tings with overly diffuse priors for count accuracy, inference for φi was not
reproducible across MCMC simulations. This highlights the importance of



DYNAMICS OF HOMELESSNESS 31

reliable prior information about count accuracy as it pertains to estimating
the relationship between trends in ZRI and homelessness.

In Figure 11a, observe that, because the counting process is imperfect,
the expected total number of homeless is more than the counted number of
homeless. In San Francisco, we expect that, in 2016, there were 9,547 people
experiencing homelessness, with 95% posterior probability that there were
more than 8,859 and fewer than 10,328. Table 2 presents the posterior mean
and 95% credible interval for the total number of homeless in 2016 for each
metro.

6.5. Forecasts for 2017. Resources to address the needs of a homeless
population are budgeted well in advance of the January point-in-time count.
In order to allocate resources in communities with growing (shrinking) home-
less populations, a forecast of the next year’s total homeless population is
needed. In this section, we forecast the total homeless population in each
metro in January 2017.

Our forecasts of the homeless population for 2017 take into account
both predicted increases in the 2017 total population and the January 2017
ZRI value. We report the one-year-ahead forecast

Hi,T+1|C1:25,1:T , N1:25,1:T , ZRI1:25,T+1.(6.1)

For true out-of-sample forecasting when ZRIi,T+1 is not yet available, we

could utilize Zillow’s forecasted ZRI for metro i, ˆZRIi,T+1.
Figure 11b illustrates the year-ahead forecast in San Francisco. Fore-

casting the total homeless population one year in the future requires forecast-
ing both the year-ahead total metro population and log odds of homelessness.
The uncertainty in these component year-ahead forecasts accumulates, and
the result is an uncertainty interval for the 2017 year-ahead forecast that
increases relative to the intervals presented from 2011-2016. This is observed
in Figure 11b as the predictive interval in 2017 fans out relative to the un-
certainty interval from 2011-2016.

We predict that 9,610 people experienced homelessness in San Francisco
on any given January night in 2017, with 95% posterior probability of more
than 8,669 and less than 10,644 people. Although the January 2017 ZRI
decreased 3.6% relative to its January 2016 value, we still expect a slight
increase in San Francisco’s total homeless population. The increase is largely
driven by the model-based forecasted increase in San Francisco’s total popu-
lation. Each metro has a figure corresponding to Figure 11b presented in the
supplement (Glynn and Fox, 2018). The forecasted mean and 95% posterior
predictive intervals for each metro are shown in Table 2.
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7. Discussion. We presented statistical evidence that the relation-
ship between rental costs and homelessness depends on one’s beliefs about
the time-varying accuracy of homeless counts. We highlight this fact to en-
courage public policy researchers, policymakers, and continuum leaders to
carefully quantify their beliefs and uncertainty about count accuracy or the
inferences drawn from studies relying on these counts. While the prior beliefs
about count accuracy that we elicit in this paper are informed by existing
literature and our discussions with count coordinators and homelessness ex-
perts from around the country, we believe that collecting expert opinions
from every continuum can lead to a more robust and informed study. We
encourage other researchers in this area to explicitly model variation in count
accuracy when conducting their own analyses.

We use ZRI as a frequently updated measure of metro-level market
rent. While ZRI is frequently updated and responsive to changing market
conditions, it is a potentially biased measure of market rent given that it is
computed from an incomplete sample of rental homes. To limit the impact
of ZRI’s absolute level on our analysis, we focus on year-over-year percent
differences in ZRI, a strategy that allows us to investigate the relationship
between changes in homelessness to changes in ZRI.

We found in synthetic data experiments that making accurate inference
on the relationship between ZRI and homelessness with the model outlined
in this paper requires homelessness rates that exceed 0.05% of the total
population (Section 4.4). To work with counts as large as possible, this im-
plies that sheltered and unsheltered homeless totals should be combined in
a single analysis of a metro’s total homeless population. Furthermore, reli-
able estimates of the entire homeless population are significantly aided by
a metro having either a large sheltered population or high count accuracy
of the unsheletered population; utilizing data on unsheltered homeless pop-
ulations alone does not yield reliable results. This observation fits with our
broader theme of data quality.

Modeling count accuracy is another place where we have directly ad-
dressed data quality challenges. Acknowledging that a continuum’s homeless
counts are imperfect and that the accuracy varies from one year to the next
should not be viewed in any way as a failure of the count coordinators or
volunteers. We view quantifying the count accuracy as an important step in
accounting for the uncertainty inherent in such a difficult undertaking.

In our analysis, we have used the time-varying count accuracy to im-
pute the size of the total homeless population. We believe it is natural in
this application to think of the total homeless population as missing data.
Assuming that the total population size is the observed count has two flaws.
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First, it understates the size of the homeless population. Second, it leads to
overly confident estimates of regression coefficients φ1, . . . , φ25. Imputing the
missing homeless population size naturally resolves both of these problems.

In this application, proper uncertainty quantification is critical. Coun-
ties, city governments, shelters, and health care providers are likely to benefit
from an expected range of the homeless population size when they budget
resources. By reporting the 95% posterior credible intervals on the total
homeless population predictions and the 2017 forecasts, we emphasize the
uncertain size of homeless populations now and in the future.

Metro-specific estimates of the relationship between rental costs and
homelessness allow for each metro to make more informed policy decisions
about affordable housing initiatives. We provide evidence that the homeless-
ness rate significantly increased from 2011 - 2016 in six metros: New York,
Los Angeles, Washington, D.C., Seattle, San Francisco, and Boston. While
we are unable to conclude that increased rent causes homelessness, we found
that large increases in ZRI are statistically associated with increases in the
homeless population in four of those six metros: New York, Los Angeles,
Washington, D.C., and Seattle. We believe that our results provide context
for policy discussions that are happening in cities across the United States.

Homelessness is a product of many complicated and intertwined factors.
Though an increase in rental costs is surely an important factor, vacancy
rates, supportive services, affordable housing, affordable healthcare, and lack
of economic opportunity may contribute as well. To investigate the compli-
cated interactions of these factors at the local level with our current mod-
eling framework, more frequent metro-level homeless counts are needed. In
addition to counts occurring more often, estimating the relationship of these
factors to increased homelessness also requires researchers to have more in-
formed prior beliefs about count accuracy. One potential way of obtaining
additional information on count accuracy is with post-count surveys at soup
kitchens and other service providers, as in Hopper et al. (2008).

Due to limited information about count accuracy, we make several as-
sumptions to aid our analysis. Most notably, we assume a prior distribution
for count accuracy in each metro. The prior mean is determined by the pro-
portion of unsheltered homeless in 2010 and the assumption that 60% of un-
sheltered homeless are counted while 95% of sheltered homeless are counted.
Naturally, the estimated size of the total homeless population is sensitive to
these assumptions, with lower expected accuracy inflating the estimate of
the total homeless population. Prior variance of the count accuracy prior
also impacts how sharply we can estimate the relationship between home-
lessness and ZRI. The more diffuse the prior distribution for count accuracy,
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the more diffuse the posterior distribution for our φi regression coefficients.
While we believe the assumptions that we made to be reasonable based on
existing literature and discussions with homeless experts and count coordi-
nators, we again emphasize that stronger prior information is needed about
count accuracy in every metro to sharpen this analysis.

There are additional limitations of our current approach. One is that
it does not account for relocation in homeless populations. It is possible
that people experiencing homelessness move to cities with more services
and away from cities with fewer services. In this scenario, increases in the
population of one metro are driven by decreases in another. Our present
approach does not take into account network effects, and we assume that
homeless relocation patterns are not a significant driver of trends across
metros. At present, we do not know of data that would allow us to further
investigate network effects. A second is that we rely on January count data.
It is likely that seasonal patterns in homelessness exist, though our current
annual data set does not provide insight into such seasonal fluctuations.
Modeling network effects and seasonal fluctuations in homeless populations
are important areas of future work.

SUPPLEMENTARY MATERIAL

Metro-level supporting figures
(doi: COMPLETED BY THE TYPESETTER; .pdf). As supplementary
material, we present figures for each of the 25 largest metros in the United
States from 2011-2017. For each metro, we present

a the posterior predictive distribution for homeless counts,
C∗i,1:T |C1:25,1:T , N1:25,1:T , and the imputed total homeless population
size, Hi,1:T |C1:25,1:T , H1:25,1:T ;

b the predictive distribution for the total homeless population in 2017,
Hi,2017|C1:25,1:T , N1:25,1:T ;

c the posterior distribution of increase in the total homeless population
with increases in ZRI; and

d the sensitivity of the inferred increase in the homelessness rate from
2011 - 2016 to different annual changes in count accuracy.
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